2. Basic Usage¶
Futhark contains several code generation backends. Each is provided
as a full standalone compiler binary. For example, futhark-c
compiles a Futhark program by translating it to sequential C code,
while futhark-pyopencl
generates Python and the PyOpenCL library.
The different compilers all contain the same frontend and optimisation
pipeline - only the code generator is different. They all provide
roughly the same command line interface, but there may be minor
differences and quirks due to characteristics of the specific
backends.
There are two main ways of compiling a Futhark program: to an
executable (by using --executable
, which is the default), and to a
library (--library
). Executables can be run immediately, but are
useful mostly for testing and benchmarking. Libraries can be called
from non-Futhark code.
2.1. Compiling to Executable¶
A Futhark program is stored in a file with the extension .fut
. It
can be compiled to an executable program as follows:
$ futhark-c prog.fut
This makes use of the futhark-c
compiler, but any other will work
as well. The compiler will automatically invoke gcc
to produce an
executable binary called prog
. If we had used futhark-py
instead of futhark-c
, the prog
file would instead have
contained Python code, along with a shebang for easy execution. In
general, when compiling file foo.fut
, the result will be written
to a file foo
(i.e. the extension will be stripped off). This can
be overridden using the -o
option. For more details on specific
compilers, see their individual manual pages.
Executables generated by the various Futhark compilers share a common
command-line interface, but may also individually support more
options. When a Futhark program is run, execution starts at one of
its entry points. By default, the entry point named main
is
run. An alternative entry point can be indicated by using the -e
option. All entry point functions must be declared appropriately in
the program (see Entry Points). If the entry point takes any
parameters, these will be read from standard input in a subset of the
Futhark syntax. A binary input format is also supported; see
Binary Data Format. The result of the entry point is printed
to standard output.
Only a subset of all Futhark values can be passed to an executable. Specifically, only primitives and arrays of primitive types are supported. In particular, nested tuples and arrays of tuples are not permitted. Non-nested tuples are supported are supported as simply flat values. This restriction is not present for Futhark programs compiled to libraries. If an entry point returns any such value, its printed representation is unspecified. As a special case, an entry point is allowed to return a flat tuple.
Instead of compiling, there is also an interpreter, futharki
. Be
aware that it is very slow, and does not produce better error messages
than the compiler. Note: If you run futharki
without any
options, you will see something that looks deceptively like a REPL,
but it is not yet finished, and only marginally useful in its present
state.
2.1.1. Executable Options¶
All generated executables support the following options.
-t FILE
Print the time taken to execute the program to the indicated file, an integral number of microseconds. The time taken to perform tup or teardown, including reading the input or writing the sult, is not included in the measurement. See the documentation r specific compilers to see exactly what is measured.
-r RUNS
Run the specified entry point the given number of times (plus a warmup run). The program result is only printed once, after the last run. If combined with-t
, one measurement is printed per run. This is a good way to perform benchmarking.
-D
Print debugging information on standard error. Exactly what is printed, and how it looks, depends on which Futhark compiler is used. This option may also enable more conservative (and slower) execution, such as frequently synchronising to check for errors.
-b
Print the result using the binary data format (Binary Data Format). For large outputs, this is significantly faster and takes up less space.
The following options are supported by executables generated by
futhark-opencl
and futhark-pyopencl
:
-p PLATFORM
Pick the first OpenCL platform whose name contains the given string. The special string#k
, wherek
is an integer, can be used to pick the k-th platform, numbered from zero.
-d DEVICE
Pick the first OpenCL device whose name contains the given string. The special string#k
, wherek
is an integer, can be used to pick the k-th device, numbered from zero. If used in conjunction with-p
, only the devices from matching platforms are considered.
--dump-opencl FILE
Dump the embedded OpenCL program to the indicated file. Useful if you want to see what is actually being executed.
--load-opencl FILE
Instead of using the embedded OpenCL program, load it from the indicated file. This is extremely unlikely to result in succesful execution unless this file is the result of a previous call to--dump-opencl
(perhaps lightly modified).
There is rarely a need to use both -p
and -d
. For example, to
run on the first available NVIDIA GPU, -p NVIDIA
is sufficient, as
there is likely only a single device associated with this platform.
On *nix (including macOS), the clinfo tool (available in many package
managers) can be used to determine which OpenCL platforms and devices
are available on a given system. On Windows, CPU-z can be used.
2.2. Compiling to Library¶
While compiling a Futhark program to an executable is useful for
testing, it is not suitable for production use. Instead, a Futhark
program should be compiled into a reusable library in some target
language, enabling integration into a larger program. Four of the
Futhark compilers support this: futhark-c
, futhark-opencl
,
futhark-py
, and futhark-pyopencl
.
2.2.1. General Concerns¶
Futhark entry points are mapped to some form of function or method in the target language. Generally, an entry point taking n parameters will result in a function taking n parameters. Extra parameters may be added to pass in context data, or out-parameters for writing the result, for target languages that do not support multiple return values from functions.
Not all Futhark types can be mapped cleanly to the target language. Arrays of tuples are the most common case. In such cases, opaque types are used in the generated code. Values of these types cannot be directly inspected, but can be passed back to Futhark entry points. In the general case, these types will be named with a random hash. However, you if you insert explicit type annotations (and the type name contains only characters valid for identifiers for the used backend), the indicated name will be used. Note that arrays contain brackets, which are usually not valid in identifiers. Defining a simple type alias is the best way around this.
2.2.2. Generating C¶
A Futhark program futlib.fut
can be compiled to reusable C code
using either:
$ futhark-c --library futlib.fut
Or:
$ futhark-c --library futlib.fut
This produces two files in the current directory: futlib.c
and
futlib.h
. If we wish (and are on a Unix system), we can then
compile futlib.c
to a shared library like this:
$ gcc dotprod.c -o libdotprod.so -fPIC -shared
However, details of how to link the generated code with other C code is highly system-dependent, and outside the scope of this manual.
The generated header file (here, futlib.h
) specifies the API, and
is intended to be human-readable. The basic usages revolves around
creating a configuration object, which can then be used to obtain a
context object, which must be passed whenever entry points are
call.ed
The configuration object is created using the following function:
struct futhark_context_config *futhark_context_config_new();
Depending on the backend, various functions are generated to modify the configuration. The following is always available:
void futhark_context_config_set_debugging(struct futhark_context_config *cfg,
int flag);
A configuration object can be used to create a context with the following function:
struct futhark_context *futhark_context_new(struct futhark_context_config *cfg);
Memory management is entirely manual. Deallocation functions are provided for all types defined in the header file. Everything returned by an entry point must be manually deallocated.
Functions that can fail return an integer: 0 on success and a non-zero value on error. A human-readable string describing the error can be retrieved with the following function:
char *futhark_context_get_error(struct futhark_context *ctx);
It is the callers responsibility to free()
the returned string.
Any subsequent call to the function returns NULL
, until a new
error occurs.
For now, many internal errors, such as failure to allocate memory,
will cause the function to abort()
rather than return an error
code. However, all application errors (such as bounds and array size
checks) will produce an error code.
The API functions are thread safe.
2.2.3. Generating Python¶
The futhark-py
and futhark-pyopencl
compilers both support
generating reusable Python code, although the latter of these
generates code of sufficient performance to be worthwhile. The
following mentions options and parameters only available for
futhark-pyopencl
. You will need at least PyOpenCL version 2015.2.
We can use futhark-pyopencl
to translate the program
futlib.fut
into a Python module futlib.py
with the following
command:
$ futhark-pyopencl --library futlib.fut
This will create a file futlib.py
, which contains Python code that
defines a class named futlib
. This class defines one method for
each entry point function (see Entry Points) in the Futhark
program. The methods take one parameter for each parameter in the
corresponding entry point, and return a tuple containing a value for
every value returned by the entry point. For entry points returning a
single (non-tuple) value, just that value is returned (that is,
single-element tuples are not returned).
After the class has been instantiated, these methods can be invoked to run the corresponding Futhark function. The constructor for the class takes various keyword parameters:
interactive=BOOL
IfTrue
(the default isFalse
), show a menu of available OpenCL platforms and devices, and use the one chosen by the user.
platform_pref=STR
Use the first platform that contains the given string. Similar to the-p
option for executables.
device_pref=STR
Use the first device that contains the given string. Similar to the-d
option for executables.
Futhark arrays are mapped to either the Numpy ndarray
type or the
`pyopencl.array
<https://documen.tician.de/pyopencl/array.html>_`
type. Scalars are mapped to Numpy scalar types.