
Futhark User’s Guide
Release 0.24.3

DIKU

Apr 23, 2023

TABLE OF CONTENTS

1 Installation 3
1.1 Dependencies . 3
1.2 Compiling from source . 3
1.3 Installing from a precompiled snapshot . 4
1.4 Installing Futhark on Linux . 4
1.5 Installing Futhark on macOS . 5
1.6 Setting up Futhark on Windows . 5
1.7 Futhark with Nix . 5

2 Basic Usage 7
2.1 Compiling to Executable . 7
2.2 Compiling to Library . 11
2.3 Reproducibility . 14

3 Language Reference 15
3.1 Comments . 15
3.2 Identifiers and Keywords . 15
3.3 Primitive Types and Values . 16
3.4 Declarations . 18
3.5 Expressions . 21
3.6 Higher-order functions . 31
3.7 Type Inference . 31
3.8 Size Types . 31
3.9 In-place Updates . 36
3.10 Modules . 37
3.11 Referencing Other Files . 40
3.12 Attributes . 41

4 C API Reference 45
4.1 Error codes . 45
4.2 Configuration . 46
4.3 Context . 47
4.4 Values . 48
4.5 Entry points . 50
4.6 GPU . 50
4.7 OpenCL . 51
4.8 CUDA . 52
4.9 Multicore . 52
4.10 General guarantees . 52
4.11 Manifest . 53

i

5 JavaScript API Reference 57
5.1 General concerns . 57
5.2 FutharkContext . 58
5.3 Values . 58
5.4 FutharkArray . 58
5.5 FutharkOpaque . 59
5.6 Entry Points . 59

6 Package Management 61
6.1 Basic Concepts . 61
6.2 Using Packages . 61
6.3 Creating Packages . 63
6.4 Version Selection . 65
6.5 Tests and Documentation for Dependencies . 65
6.6 Safety . 65
6.7 Private repositories . 66

7 Writing Fast Futhark Programs 67
7.1 Parallelism . 67
7.2 Value Representation . 69
7.3 Crucial Optimisations . 71
7.4 Free Operations . 72
7.5 Small Arrays . 72
7.6 Inlining . 72

8 Compiler Error Index 73
8.1 Uniqueness errors . 73
8.2 Size errors . 77
8.3 Module errors . 81
8.4 Other errors . 81
8.5 Entry points . 83

9 Server Protocol 85
9.1 Basics . 85
9.2 Variables . 85
9.3 Types . 86
9.4 Consumption and aliasing . 86
9.5 Commands . 86
9.6 Environment Variables . 88

10 C Porting Guide 89
10.1 Where This Guide Falls Short . 89
10.2 Types . 89
10.3 Operators . 89
10.4 Variable Mutation . 90
10.5 Arrays . 91

11 Futhark Compared to Other Functional Languages 93
11.1 Basic Syntax . 93
11.2 Evaluation . 94
11.3 Types . 94

12 Binary Data Format 97
12.1 Specification . 97

ii

13 Glossary 99

14 futhark 105
14.1 SYNOPSIS . 105
14.2 DESCRIPTION . 105
14.3 COMMANDS . 105
14.4 SEE ALSO . 107

15 futhark-autotune 109
15.1 SYNOPSIS . 109
15.2 DESCRIPTION . 109
15.3 OPTIONS . 109
15.4 SEE ALSO . 110

16 futhark-bench 111
16.1 SYNOPSIS . 111
16.2 DESCRIPTION . 111
16.3 METHODOLOGY . 111
16.4 OPTIONS . 112
16.5 EXAMPLES . 113
16.6 SEE ALSO . 113

17 futhark-c 115
17.1 SYNOPSIS . 115
17.2 DESCRIPTION . 115
17.3 OPTIONS . 115
17.4 ENVIRONMENT VARIABLES . 116
17.5 EXECUTABLE OPTIONS . 116
17.6 SEE ALSO . 116

18 futhark-cuda 117
18.1 SYNOPSIS . 117
18.2 DESCRIPTION . 117
18.3 OPTIONS . 117
18.4 ENVIRONMENT VARIABLES . 117
18.5 EXECUTABLE OPTIONS . 118
18.6 ENVIRONMENT . 118
18.7 SEE ALSO . 119

19 futhark-dataset 121
19.1 SYNOPSIS . 121
19.2 DESCRIPTION . 121
19.3 OPTIONS . 121
19.4 EXAMPLES . 122
19.5 SEE ALSO . 122

20 futhark-doc 123
20.1 SYNOPSIS . 123
20.2 DESCRIPTION . 123
20.3 OPTIONS . 123
20.4 EXAMPLES . 124
20.5 SEE ALSO . 124

21 futhark-literate 125
21.1 SYNOPSIS . 125

iii

21.2 DESCRIPTION . 125
21.3 OPTIONS . 125
21.4 DIRECTIVES . 126
21.5 FUTHARKSCRIPT . 128
21.6 SAFETY . 128
21.7 BUGS . 129
21.8 SEE ALSO . 129

22 futhark-multicore 131
22.1 SYNOPSIS . 131
22.2 DESCRIPTION . 131
22.3 OPTIONS . 131
22.4 ENVIRONMENT VARIABLES . 131
22.5 EXECUTABLE OPTIONS . 132
22.6 BUGS . 132
22.7 SEE ALSO . 132

23 futhark-ispc 133
23.1 SYNOPSIS . 133
23.2 DESCRIPTION . 133
23.3 OPTIONS . 133
23.4 ENVIRONMENT VARIABLES . 133
23.5 EXECUTABLE OPTIONS . 133
23.6 BUGS . 134
23.7 SEE ALSO . 134

24 futhark-opencl 135
24.1 SYNOPSIS . 135
24.2 DESCRIPTION . 135
24.3 OPTIONS . 135
24.4 ENVIRONMENT VARIABLES . 135
24.5 EXECUTABLE OPTIONS . 136
24.6 SEE ALSO . 137

25 futhark-pkg 139
25.1 SYNOPSIS . 139
25.2 DESCRIPTION . 139
25.3 COMMANDS . 140
25.4 COMMIT VERSIONS . 141
25.5 EXAMPLES . 141
25.6 BUGS . 141
25.7 SEE ALSO . 141

26 futhark-pyopencl 143
26.1 SYNOPSIS . 143
26.2 DESCRIPTION . 143
26.3 OPTIONS . 143
26.4 SEE ALSO . 143

27 futhark-python 145
27.1 SYNOPSIS . 145
27.2 DESCRIPTION . 145
27.3 OPTIONS . 145
27.4 SEE ALSO . 145

iv

28 futhark-repl 147
28.1 SYNOPSIS . 147
28.2 DESCRIPTION . 147
28.3 OPTIONS . 147
28.4 SEE ALSO . 147

29 futhark-run 149
29.1 SYNOPSIS . 149
29.2 DESCRIPTION . 149
29.3 OPTIONS . 149
29.4 SEE ALSO . 149

30 futhark-test 151
30.1 SYNOPSIS . 151
30.2 DESCRIPTION . 151
30.3 OPTIONS . 152
30.4 ENVIRONMENT VARIABLES . 153
30.5 EXAMPLES . 153
30.6 SEE ALSO . 154

31 futhark-wasm 155
31.1 SYNOPSIS . 155
31.2 DESCRIPTION . 155
31.3 OPTIONS . 155
31.4 ENVIRONMENT VARIABLES . 155
31.5 EXECUTABLE OPTIONS . 155
31.6 SEE ALSO . 156

32 futhark-wasm-multicore 157
32.1 SYNOPSIS . 157
32.2 DESCRIPTION . 157
32.3 OPTIONS . 157
32.4 ENVIRONMENT VARIABLES . 157
32.5 EXECUTABLE OPTIONS . 157
32.6 SEE ALSO . 157

Index 159

v

vi

Futhark User’s Guide, Release 0.24.3

Welcome to the documentation for the Futhark compiler and language. For a basic introduction, please see the Futhark
website. To get started, read the page on Installation. Once the compiler has been installed, you might want to take a
look at Basic Usage. This User’s Guide contains a Language Reference, but new Futhark programmers are probably
better served by reading Parallel Programming in Futhark first.

Documentation for the built-in prelude is also available online.

The particularly interested reader may also want to peruse the publications, or the development blog.

TABLE OF CONTENTS 1

http://futhark-lang.org
http://futhark-lang.org
https://futhark-book.readthedocs.io
https://futhark-lang.org/docs/prelude/
https://futhark-lang.org/docs.html#publications
https://futhark-lang.org/blog.html

Futhark User’s Guide, Release 0.24.3

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLATION

There are two main ways to install the Futhark compiler: using a precompiled tarball or compiling from source. Both
methods are discussed below. If you are using Linux, see Installing Futhark on Linux. If you are using Windows, see
read Setting up Futhark on Windows. If you are using macOS, see Using OpenCL or CUDA.

Futhark is also available via Nix. If you are using Nix, simply install the futhark derivation from Nixpkgs.

1.1 Dependencies

The Linux binaries we distribute are statically linked and should not require any special libraries installed system-wide.

When building from source on Linux and macOS, you will need to have the gmp, tinfo, and zlib libraries installed.
These are pretty common, so you may already have them. On Debian-like systems (e.g. Ubuntu), use:

sudo apt install libtinfo-dev libgmp-dev zlib1g-dev

If you install Futhark via a package manager (e.g. Homebrew, Nix, or AUR), you shouldn’t need to worry about any of
this.

Actually running the output of the Futhark compiler may require additional dependencies, for example an OpenCL
library and GPU driver. See the documentation for the respective compiler backends.

1.2 Compiling from source

To compile Futhark you must first install an appropriate version of GHC, either with ghcup or a package manager. Any
version since GHC 9.0 should work. You also need the cabal command line program, which ghcup will install for you
as well.

You then either retrieve a source release tarball or perform a checkout of our Git repository:

$ git clone https://github.com/diku-dk/futhark.git

This will create a directory futhark, which you must enter:

$ cd futhark

First you must run the following command to download metadata about Futhark’s dependencies:

$ make configure

To build the Futhark compiler and all of its dependencies, run:

3

https://nixos.org/nix/
https://www.haskell.org/ghcup
https://github.com/diku-dk/futhark/releases

Futhark User’s Guide, Release 0.24.3

$ make build

This step typically requires at least 8GiB of memory. This will create files in your ~/.cabal and ~/.ghc directories.

After building, you can copy the binaries to your $HOME/.local/bin directory by running:

$ make install

You can set the PREFIX environment variable to indicate a different installation path. Note that this does not install
the Futhark manual pages. You can delete ~/.cabal and ~/.ghc after this if you wish - the futhark binary will still
work.

1.3 Installing from a precompiled snapshot

Tarballs of binary releases can be found online, but are available only for very few platforms (as of this writing, only
GNU/Linux on x86_64). See the enclosed README.md for installation instructions.

Furthermore, every day a program automatically clones the Git repository, builds the compiler, and packages a simple
tarball containing the resulting binaries, built manpages, and a simple Makefile for installing. The implication is that
these tarballs are not vetted in any way, nor more stable than Git HEAD at any particular moment in time. They are
provided for users who wish to use the most recent code, but are unable to compile Futhark themselves.

We build such binary snapshots for the following operating systems:

Linux (x86_64)
futhark-nightly-linux-x86_64.tar.xz

macOS (x86_64)
futhark-nightly-macos-x86_64.zip

Windows (x86_64)
futhark-nightly-windows-x86_64.zip

You will still likely need to make a C compiler (such as GCC) available on your own.

1.4 Installing Futhark on Linux

• Homebrew is a distribution-agnostic package manager for macOS and Linux that contains a formula for Futhark.
If Homebrew is already installed (which does not require root access), installation is as easy as:

$ brew install futhark

• Arch Linux users can use a futhark-nightly package or a regular futhark package.

• NixOS users can install the futhark derivation.

Otherwise (or if the version in the package system is too old), your best bet is to install from source or use a tarball, as
described above.

4 Chapter 1. Installation

https://futhark-lang.org/releases/
https://futhark-lang.org/releases/futhark-nightly-linux-x86_64.tar.xz
https://futhark-lang.org/releases/futhark-nightly-macos-x86_64.tar.xz
https://futhark-lang.org/releases/futhark-nightly-windows-x86_64.zip
https://brew.sh/
https://aur.archlinux.org/packages/futhark-nightly/
https://aur.archlinux.org/packages/futhark

Futhark User’s Guide, Release 0.24.3

1.4.1 Using OpenCL or CUDA

If you wish to use futhark opencl or futhark cuda, you must have the OpenCL or CUDA libraries installed,
respectively. Consult your favourite search engine for instructions on how to do this on your distribution. It is usually
not terribly difficult if you already have working GPU drivers.

For OpenCL, note that there is a distinction between the general OpenCL host library (OpenCL.so) that Futhark links
against, and the Installable Client Driver (ICD) that OpenCL uses to actually talk to the hardware. You will need both.
Working display drivers for the GPU does not imply that an ICD has been installed - they are usually in a separate
package. Consult your favourite search engine for details.

1.5 Installing Futhark on macOS

Futhark is available on Homebrew, and the latest release can be installed via:

$ brew install futhark

Or you can install the unreleased development version with:

$ brew install --HEAD futhark

This has to compile from source, so it takes a little while (20-30 minutes is common).

macOS ships with one OpenCL platform and various devices. One of these devices is always the CPU, which is not
fully functional, and is never picked by Futhark by default. You can still select it manually with the usual mechanisms
(see Executable Options), but it is unlikely to be able to run most Futhark programs. Depending on the system, there
may also be one or more GPU devices, and Futhark will simply pick the first one as always. On multi-GPU MacBooks,
this is is the low-power integrated GPU. It should work just fine, but you might have better performance if you use
the dedicated GPU instead. On a Mac with an AMD GPU, this is done by passing -dAMD to the generated Futhark
executable.

1.6 Setting up Futhark on Windows

Due to limited maintenance and testing resources, Futhark is only partially supported on Windows. A precompiled
nightly snapshot is available above.

In most cases, it is better to install WSL and follow the Linux instructions above. The C code generated by the Futhark
compiler should work on Windows, except for the multicore backend.

1.7 Futhark with Nix

Futhark mostly works fine with Nix and NixOS, but when using OpenCL you may need to make more packages available
in your environment. This is regardless of whether you are using the futhark package from Nixpkgs or one you have
installed otherwise.

• On NixOS, for OpenCL, you should import opencl-headers and ocl-icd. You also need some form of
OpenCL backend. If you have an AMD GPU and use ROCm, you may also need rocm-opencl-runtime.

• On NixOS, for CUDA (and probably also OpenCL on NVIDIA GPUs), you need cudatoolkit. However,
cudatoolkit does not appear to provide libcuda.so and similar libraries. These are instead provided in an
nvidia_x11 package that is specific to some kernel version, e.g. linuxPackages_5_4.nvidia_x11. You will
need this as well.

1.5. Installing Futhark on macOS 5

https://brew.sh/
https://docs.microsoft.com/en-us/windows/wsl/install
https://nixos.org/

Futhark User’s Guide, Release 0.24.3

• On macOS, for OpenCL, you need darwin.apple_sdk.frameworks.OpenCL.

These can be easily made available with e.g:

nix-shell -p opencl-headers -p ocl-icd

6 Chapter 1. Installation

CHAPTER

TWO

BASIC USAGE

Futhark contains several code generation backends. Each is provided as subcommand of the futhark binary. For
example, futhark c compiles a Futhark program by translating it to sequential C code, while futhark pyopencl
generates Python code with calls to the PyOpenCL library. The different compilers all contain the same frontend and
optimisation pipeline - only the code generator is different. They all provide roughly the same command line interface,
but there may be minor differences and quirks due to characteristics of the specific backends.

There are three main ways of compiling a Futhark program: to an ordinary executable (by using --executable,
which is the default), to a server executable (--server), and to a library (--library). Plain executables can be run
immediately, but are useful mostly for testing and benchmarking. Server executables are discussed in Server Protocol.
Libraries can be called from non-Futhark code.

2.1 Compiling to Executable

A Futhark program is stored in a file with the extension .fut. It can be compiled to an executable program as follows:

$ futhark c prog.fut

This makes use of the futhark c compiler, but any other will work as well. The compiler will automatically invoke
cc to produce an executable binary called prog. If we had used futhark py instead of futhark c, the prog file
would instead have contained Python code, along with a shebang for easy execution. In general, when compiling file
foo.fut, the result will be written to a file foo (i.e. the extension will be stripped off). This can be overridden using
the -o option. For more details on specific compilers, see their individual manual pages.

Executables generated by the various Futhark compilers share a common command-line interface, but may also indi-
vidually support more options. When a Futhark program is run, execution starts at one of its entry points. By default,
the entry point named main is run. An alternative entry point can be indicated by using the -e option. All entry point
functions must be declared appropriately in the program (see Entry Points). If the entry point takes any parameters,
these will be read from standard input in a subset of the Futhark syntax. A binary input format is also supported; see
Binary Data Format. The result of the entry point is printed to standard output.

Only a subset of all Futhark values can be passed to an executable. Specifically, only primitives and arrays of primitive
types are supported. In particular, nested tuples and arrays of tuples are not permitted. Non-nested tuples are supported
are supported as simply flat values. This restriction is not present for Futhark programs compiled to libraries. If an
entry point returns any such value, its printed representation is unspecified. As a special case, an entry point is allowed
to return a flat tuple.

Instead of compiling, there is also an interpreter, accessible as futhark run and futhark repl. The latter is an
interactive prompt, useful for experimenting with Futhark expressions. Be aware that the interpreter runs code very
slowly.

7

https://en.wikipedia.org/wiki/Shebang_%28Unix%29

Futhark User’s Guide, Release 0.24.3

2.1.1 Executable Options

All generated executables support the following options.

-h/--help

Print help text to standard output and exit.

-D/--debugging

Print debugging information on standard error. Exactly what is printed, and how it looks, de-
pends on which Futhark compiler is used. This option may also enable more conservative (and
slower) execution, such as frequently synchronising to check for errors. This implies --log.

-L/--log

Print low-overhead logging information during initialisation and during execution of entry
points. Enabling this option should not affect program performance.

--cache-file FILE

Create (if necessary) and use data in the provided cache file to speed up subsequent launches of
the same program. The cache file is automatically updated by the running program as necessary.
It is safe to delete at any time, and will be recreated as necessary.

--print-params

Print a list of tuning parameters followed by their parameter class in parentheses, which indi-
cates what they are used for.

--param SIZE=VALUE

Set one of the tunable sizes to the given value. Using the --tuning option is more convenient.

--tuning FILE

Load tuning options from the indicated tuning file. The file must contain lines of the form
SIZE=VALUE, where each SIZE must be one of the sizes listed by the --print-params option
(without size class), and the VALUE must be a non-negative integer. Extraneous spaces or
blank lines are not allowed. A zero means to use the default size, whatever it may be. In case
of duplicate assignments to the same size, the last one takes predecence. This is equivalent to
passing each size setting on the command line using the --params option, but more convenient.

2.1.2 Non-Server Executable Options

The following options are only supported on non-server executables, because they make no sense in a server context.

-t/--write-runtime-to FILE

Print the time taken to execute the program to the indicated file, an integral number of microsec-
onds. The time taken to perform setup or teardown, including reading the input or writing the
result, is not included in the measurement. See the documentation for specific compilers to see
exactly what is measured.

-r/--runs RUNS

Run the specified entry point the given number of times (plus a warmup run). The program
result is only printed once, after the last run. If combined with -t, one measurement is printed
per run. This is a good way to perform benchmarking.

-b/--binary-output

8 Chapter 2. Basic Usage

Futhark User’s Guide, Release 0.24.3

Print the result using the binary data format (Binary Data Format). For large outputs, this is
significantly faster and takes up less space.

-n/--no-print-result

Do not print the result of running the program.

GPU Options

The following options are supported by executables generated with the GPU backends (opencl, pyopencl, and cuda).

-d/--device DEVICE

Pick the first device whose name contains the given string. The special string #k, where k is an
integer, can be used to pick the k-th device, numbered from zero.

-P/--profile

Measure the time taken by various GPU operations (such as kernels) and print a summary at
the end. Unfortunately, it is currently nontrivial (and manual) to relate these operations back to
source Futhark code.

OpenCL-specific Options

The following options are supported by executables generated with the OpenCL backends (opencl, pyopencl):

-p/--platform PLATFORM

Pick the first OpenCL platform whose name contains the given string. The special string #k,
where k is an integer, can be used to pick the k-th platform, numbered from zero. If used in
conjunction with -d, only the devices from matching platforms are considered.

--default-group-size INT

The default size of OpenCL workgroups that are launched. Capped to the hardware limit if
necessary.

--default-num-groups INT

The default number of OpenCL workgroups that are launched.

--dump-opencl FILE

Don’t run the program, but instead dump the embedded OpenCL program to the indicated file.
Useful if you want to see what is actually being executed.

--load-opencl FILE

Instead of using the embedded OpenCL program, load it from the indicated file. This is ex-
tremely unlikely to result in succesful execution unless this file is the result of a previous call
to --dump-opencl (perhaps lightly modified).

--dump-opencl-binary FILE

Don’t run the program, but instead dump the compiled version of the embedded OpenCL pro-
gram to the indicated file. On NVIDIA platforms, this will be PTX code. If this option is set,
no entry point will be run.

--load-opencl-binary FILE

Load an OpenCL binary from the indicated file.

--build-option OPT

2.1. Compiling to Executable 9

Futhark User’s Guide, Release 0.24.3

Add an additional build option to the string passed to clBuildProgram(). Refer to the
OpenCL documentation for which options are supported. Be careful - some options can easily
result in invalid results.

--list-devices

List all OpenCL devices and platforms available on the system.

There is rarely a need to use both -p and -d. For example, to run on the first available NVIDIA GPU, -p NVIDIA is
sufficient, as there is likely only a single device associated with this platform. On *nix (including macOS), the clinfo
tool (available in many package managers) can be used to determine which OpenCL platforms and devices are available
on a given system.

CUDA-specific Options

The following options are supported by executables generated by the cuda backend:

--dump-cuda FILE

Don’t run the program, but instead dump the embedded CUDA program to the indicated file.
Useful if you want to see what is actually being executed.

--load-cuda FILE

Instead of using the embedded CUDA program, load it from the indicated file. This is ex-
tremely unlikely to result in succesful execution unless this file is the result of a previous call
to --dump-cuda (perhaps lightly modified).

--dump-ptx FILE

As --dump-cuda, but dumps the compiled PTX code instead.

--load-ptx FILE

Instead of using the embedded CUDA program, load compiled PTX code from the indicated
file.

--nvrtc-option OPT

Add the given option to the command line used to compile CUDA kernels with NVRTC. The
list of supported options varies with the CUDA version but can be found in the NVRTC docu-
mentation.

For convenience, CUDA executables also accept the same --default-num-groups and --default-group-size
options that the OpenCL backend uses. These then refer to grid size and thread block size, respectively.

Multicore options

The following options are supported by executables generated by the multicore backend:

--num-threads INT

The number of threads used to run parallel operations. If set to a value less than 1, then the
runtime system will use one thread per detected core.

-P/--profile

Measure the time taken by various parallel sections and print a summary at the end. Unfortu-
nately, it is currently nontrivial (and manual) to relate these operations back to source Futhark
code.

10 Chapter 2. Basic Usage

https://github.com/Oblomov/clinfo
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options

Futhark User’s Guide, Release 0.24.3

2.2 Compiling to Library

While compiling a Futhark program to an executable is useful for testing, it is not suitable for production use. Instead, a
Futhark program should be compiled into a reusable library in some target language, enabling integration into a larger
program. Five of the Futhark compilers support this: futhark c, futhark opencl, futhark cuda, futhark py,
and futhark pyopencl.

2.2.1 General Concerns

Futhark entry points are mapped to some form of function or method in the target language. Generally, an entry point
taking n parameters will result in a function taking n parameters. If the entry point returns an m-element tuple, then
the function will return m values (although the tuple can be replaced with a single opaque value, see below). Extra
parameters may be added to pass in context data, or out-parameters for writing the result, for target languages that do
not support multiple return values from functions.

The entry point should have a name that is also a valid C identifier.

Not all Futhark types can be mapped cleanly to the target language. Arrays of tuples, for example, are a common issue.
In such cases, opaque types are used in the generated code. Values of these types cannot be directly inspected, but can
be passed back to Futhark entry points. In the general case, these types will be named with a random hash. However,
if you insert an explicit type annotation (and the type name contains only characters valid for identifiers for the used
backend), the indicated name will be used. Note that arrays contain brackets, which are usually not valid in identifiers.
Defining and using a type abbreviation is the best way around this.

Value Mapping

The rules for how Futhark values are mapped to target language values are as follows:

• Primitive types or arrays of primitive types are mapped transparently (although for the C backends, this still
involves a distinct type for arrays).

• All other types are mapped to an opaque type. Use a type ascription with a type abbreviation to give it a specific
name, otherwise one will be generated.

Return types follow these rules, with one addition:

• If the return type is an m-element tuple, then the function returns m values, mapped according to the rules above
(but not including this one - nested tuples are not mapped directly). This rule does not apply when the entry
point has been given a return type ascription that is not syntactically a tuple type.

Consumption and Aliasing

Futhark’s support for In-place Updates has implications for the generated API. Unfortunately, The type system of most
languages (e.g. C) is not rich enough to express the rules, so they are not statically (or currently even dynamically
checked). Since Futhark will never infer a unique/consuming type for an entry point parameter, this section can be
ignored unless uniqueness annotations have been manually added to the entry points parameter types. The rules are
essentially the same as in the language itself:

1. Each entry point input parameter is either consuming or nonconsuming (the default). This corresponds to unique
and nonunique types in the original Futhark program. A value passed for a consuming parameter is consid-
ered consumed, now has an unspecified value, and may never be used again. It must still be manually freed, if
applicable. Further, any aliases of that value are also considered consumed and may not be used.

2. Each entry point output is either unique or nonunique. A unique output has no aliases. A nonunique output
aliases every nonconsuming input parameter.

2.2. Compiling to Library 11

Futhark User’s Guide, Release 0.24.3

Note that these distinctions are currently usually not visible in the generated API, and so correct usage requires knowl-
edge of the original types in the Futhark function. The safest strategy is to not expose unique types in entry points.

2.2.2 Generating C

A Futhark program futlib.fut can be compiled to reusable C code using either:

$ futhark c --library futlib.fut

Or:

$ futhark opencl --library futlib.fut

This produces three files in the current directory: futlib.c, futlib.h, and futlib.json (see Manifest for more
on the latter).

If we wish (and are on a Unix system), we can then compile futlib.c to an object file like this:

$ gcc futlib.c -c

This produces a file futlib.o that can then be linked with the main application. Details of how to link the generated
code with other C code is highly system-dependent, and outside the scope of this manual. On Unix, we can simply add
futlib.o to the final compiler or linker command line:

$ gcc main.c -o main futlib.o

Depending on the Futhark backend you are using, you may need to add some linker flags. For example, futhark
opencl requires -lOpenCL (-framework OpenCL on macOS). See the manual page for each compiler for details.

It is also possible to simply add the generated .c file to the C compiler command line used for compiling our whole
program (here main.c):

$ gcc main.c -o main futlib.c

The downside of this approach is that the generated .c file may contain code that causes the C compiler to warn (for
example, unused support code that is not needed by the Futhark program).

The generated header file (here, futlib.h) specifies the API, and is intended to be human-readable. See C API
Reference for more information.

The basic usage revolves around creating a configuration object, which can then be used to obtain a context object,
which must be passed whenever entry points are called.

The configuration object is created using the following function:

struct futhark_context_config *futhark_context_config_new();

Depending on the backend, various functions are generated to modify the configuration. The following is always
available:

void futhark_context_config_set_debugging(struct futhark_context_config *cfg,
int flag);

A configuration object can be used to create a context with the following function:

struct futhark_context *futhark_context_new(struct futhark_context_config *cfg);

12 Chapter 2. Basic Usage

Futhark User’s Guide, Release 0.24.3

Context creation may fail. Immediately after futhark_context_new(), call futhark_context_get_error() (see
below), which will return a non-NULL error string if context creation failed. The API functions are all thread safe.

Memory management is entirely manual. Deallocation functions are provided for all types defined in the header file.
Everything returned by an entry point must be manually deallocated.

For now, many internal errors, such as failure to allocate memory, will cause the function to abort() rather than return
an error code. However, all application errors (such as bounds and array size checks) will produce an error code.

C with OpenCL

When generating C code with futhark opencl, you will need to link against the OpenCL library when linking the
final binary:

$ gcc main.c -o main futlib.o -lOpenCL

When using the OpenCL backend, extra API functions are provided for directly accessing or providing the OpenCL
objects used by Futhark. Take care when using these functions. In particular, a Futhark context can now be provided
with the command queue to use:

struct futhark_context *futhark_context_new_with_command_queue(struct futhark_context_
→˓config *cfg, cl_command_queue queue);

As a cl_command_queue specifies an OpenCL device, this is also how manual platform and device selection is pos-
sible. A function is also provided for retrieving the command queue used by some Futhark context:

cl_command_queue futhark_context_get_command_queue(struct futhark_context *ctx);

This can be used to connect two separate Futhark contexts that have been loaded dynamically.

The raw cl_mem object underlying a Futhark array can be accessed with the function named
futhark_values_raw_type, where type depends on the array in question. For example:

cl_mem futhark_values_raw_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d␣
→˓*arr);

The array will be stored in row-major form in the returned memory object. The function performs no copying, so the
cl_mem still belongs to Futhark, and may be reused for other purposes when the corresponding array is freed. A dual
function can be used to construct a Futhark array from a cl_mem:

struct futhark_i32_1d *futhark_new_raw_i32_1d(struct futhark_context *ctx,
cl_mem data,
int offset,
int dim0);

This function does copy the provided memory into fresh internally allocated memory. The array is assumed to be stored
in row-major form offset bytes into the memory region.

See also futhark-opencl.

2.2. Compiling to Library 13

Futhark User’s Guide, Release 0.24.3

2.2.3 Generating Python

The futhark py and futhark pyopencl compilers both support generating reusable Python code, although the latter
of these generates code of sufficient performance to be worthwhile. The following mentions options and parameters
only available for futhark pyopencl. You will need at least PyOpenCL version 2015.2.

We can use futhark pyopencl to translate the program futlib.fut into a Python module futlib.py with the
following command:

$ futhark pyopencl --library futlib.fut

This will create a file futlib.py, which contains Python code that defines a class named futlib. This class defines
one method for each entry point function (see Entry Points) in the Futhark program. The methods take one parameter
for each parameter in the corresponding entry point, and return a tuple containing a value for every value returned by
the entry point. For entry points returning a single (non-tuple) value, just that value is returned (that is, single-element
tuples are not returned).

After the class has been instantiated, these methods can be invoked to run the corresponding Futhark function. The
constructor for the class takes various keyword parameters:

interactive=BOOL

If True (the default is False), show a menu of available OpenCL platforms and devices, and
use the one chosen by the user.

platform_pref=STR

Use the first platform that contains the given string. Similar to the -p option for executables.

device_pref=STR

Use the first device that contains the given string. Similar to the -d option for executables.

Futhark arrays are mapped to either the Numpy ndarray type or the pyopencl.array type. Scalars are mapped to Numpy
scalar types.

2.3 Reproducibility

The Futhark compiler is deterministic by design, meaning that repeatedly compiling the same program with the same
compilation flags and using the same version of the compiler will produce identical output every time.

Note that this only applies to the code generated by the Futhark compiler itself. When compiling to an executable
with one of the C backends (see Compiling to Executable), Futhark will invoke a C compiler that may not be perfectly
reproducible. In such cases the generated .c and .h files will be reproducible, but the final executable may not.

14 Chapter 2. Basic Usage

https://documen.tician.de/pyopencl/array.html

CHAPTER

THREE

LANGUAGE REFERENCE

This reference seeks to describe every construct in the Futhark language. It is not presented in a tutorial fashion, but
rather intended for quick lookup and documentation of subtleties. For this reason, it is not written in a bottom-up
manner, and some concepts may be used before they are fully defined. It is a good idea to have a basic grasp of Futhark
(or some other functional programming language) before reading this reference. An ambiguous grammar is given for
the full language. The text describes how ambiguities are resolved in practice (for example by applying rules of operator
precedence).

This reference describes only the language itself. Documentation for the built-in prelude is available elsewhere.

3.1 Comments

Line comments are indicated with -- and continue until end of line. A contiguous block of line comments beginning
with -- | is a documentation comment and has special meaning to documentation tools. Documentation comments
are only allowed immediately before declarations.

3.2 Identifiers and Keywords

id ::= letter constituent* | "_" constituent*
constituent ::= letter | digit | "_" | "'"
quals ::= (id ".")+
qualid ::= id | quals id
binop ::= opstartchar opchar*
qualbinop ::= binop | quals binop | "`" qualid "`"
fieldid ::= decimal | id
opstartchar ::= "+" | "-" | "*" | "/" | "%" | "=" | "!" | ">" | "<" | "|" | "&" | "^"
opchar ::= opstartchar | "."
constructor ::= "#" id

Many things in Futhark are named. When we are defining something, we give it an unqualified name (id). When
referencing something inside a module, we use a qualified name (qualid). The constructor names of a sum type are
identifiers prefixed with #, with no space afterwards. The fields of a record are named with fieldid. Note that a fieldid
can be a decimal number. Futhark has three distinct name spaces: terms, module types, and types. Modules (including
parametric modules) and values both share the term namespace.

15

https://futhark-lang.org/docs/prelude

Futhark User’s Guide, Release 0.24.3

3.3 Primitive Types and Values

literal ::= intnumber | floatnumber | "true" | "false"

Boolean literals are written true and false. The primitive types in Futhark are the signed integer types i8, i16, i32,
i64, the unsigned integer types u8, u16, u32, u64, the floating-point types f16, f32, f64, as well as bool.

int_type ::= "i8" | "i16" | "i32" | "i64" | "u8" | "u16" | "u32" | "u64"
float_type ::= "f16" | "f32" | "f64"

Numeric literals can be suffixed with their intended type. For example 42i8 is of type i8, and 1337e2f64 is of type
f64. If no suffix is given, the type of the literal will be inferred based on its use. If the use is not constrained, integral
literals will be assigned type i32, and decimal literals type f64. Hexadecimal literals are supported by prefixing with
0x, and binary literals by prefixing with 0b.

Floats can also be written in hexadecimal format such as 0x1.fp3, instead of the usual decimal notation. Here, 0x1.f
evaluates to 1 15/16 and the p3 multiplies it by 2^3 = 8.

intnumber ::= (decimal | hexadecimal | binary) [int_type]
decimal ::= decdigit (decdigit |"_")*
hexadecimal ::= 0 ("x" | "X") hexdigit (hexdigit |"_")*
binary ::= 0 ("b" | "B") bindigit (bindigit | "_")*

floatnumber ::= (pointfloat | exponentfloat | hexadecimalfloat) [float_type]
pointfloat ::= [intpart] fraction
exponentfloat ::= (intpart | pointfloat) exponent
hexadecimalfloat ::= 0 ("x" | "X") hexintpart hexfraction ("p"|"P") ["+" | "-"] decdigit+
intpart ::= decdigit (decdigit |"_")*
fraction ::= "." decdigit (decdigit |"_")*
hexintpart ::= hexdigit (hexdigit | "_")*
hexfraction ::= "." hexdigit (hexdigit |"_")*
exponent ::= ("e" | "E") ["+" | "-"] decdigit+

decdigit ::= "0"..."9"
hexdigit ::= decdigit | "a"..."f" | "A"..."F"
bindigit ::= "0" | "1"

3.3.1 Compound Types and Values

type ::= qualid
| array_type
| tuple_type
| record_type
| sum_type
| function_type
| type_application

16 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

| existential_size

Compound types can be constructed based on the primitive types. The Futhark type system is entirely structural, and
type abbreviations are merely shorthands (with one exception, see Sizes in type abbreviations). The only exception is
abstract types whose definition has been hidden via the module system (see Modules).

tuple_type ::= "(" ")" | "(" type ("," type)+ ")"

A tuple value or type is written as a sequence of comma-separated values or types enclosed in parentheses. For example,
(0, 1) is a tuple value of type (i32,i32). The elements of a tuple need not have the same type – the value (false,
1, 2.0) is of type (bool, i32, f64). A tuple element can also be another tuple, as in ((1,2),(3,4)), which is
of type ((i32,i32),(i32,i32)). A tuple cannot have just one element, but empty tuples are permitted, although
they are not very useful. Empty tuples are written () and are of type ().

array_type ::= "[" [dim] "]" type
dim ::= qualid | decimal

An array value is written as a sequence of zero or more comma-separated values enclosed in square brackets: [1,2,3].
An array type is written as [d]t, where t is the element type of the array, and d is an integer or variable indicating the
size. We can often elide d and write just [] (an anonymous size), in which case the size will be inferred. An anonymous
size is a syntactic shorthand, and is always replaced by an actual size by the type checker (either via inference or by
inventing a new name, depending on context).

As an example, an array of three integers could be written as [1,2,3], and has type [3]i32. An empty array is written
as [], and its type is inferred from its use. When writing Futhark values for such uses as futhark test (but not when
writing programs), empty arrays are written empty([0]t) for an empty array of type [0]t. When using empty, all
dimensions must be given a size, and at least one must be zero, e.g. empty([2][0]i32).

Multi-dimensional arrays are supported in Futhark, but they must be regular, meaning that all inner arrays must have
the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type [3][2]i32, but [[1,2], [3,4,5],
[6,7]] is not, because there we cannot come up with integers m and n such that [m][n]i32 describes the array. The
restriction to regular arrays is rooted in low-level concerns about efficient compilation. However, we can understand
it in language terms by the inability to write a type with consistent dimension sizes for an irregular array value. In a
Futhark program, all array values, including intermediate (unnamed) arrays, must be typeable.

sum_type ::= constructor type* ("|" constructor type*)*

Sum types are anonymous in Futhark, and are written as the constructors separated by vertical bars. Each constructor
consists of a #-prefixed name, followed by zero or more types, called its payload. Note: The current implementation of
sum types is fairly inefficient, in that all possible constructors of a sum-typed value will be resident in memory. Avoid
using sum types where multiple constructors have large payloads.

record_type ::= "{" "}" | "{" fieldid ":" type ("," fieldid ":" type)* "}"

Records are mappings from field names to values, with the field names known statically. A tuple behaves in all respects
like a record with numeric field names starting from zero, and vice versa. It is an error for a record type to name the
same field twice.

type_application ::= type type_arg | "*" type
type_arg ::= "[" [dim] "]" | type

3.3. Primitive Types and Values 17

Futhark User’s Guide, Release 0.24.3

A parametric type abbreviation can be applied by juxtaposing its name and its arguments. The application must provide
as many arguments as the type abbreviation has parameters - partial application is presently not allowed. See Type
Abbreviations for further details.

function_type ::= param_type "->" type
param_type ::= type | "(" id ":" type ")"

Functions are classified via function types, but they are not fully first class. See Higher-order functions for the details.

stringlit ::= '"' stringchar* '"'
stringchar ::= <any source character except "\" or newline or double quotes>
charlit ::= "'" char "'"
char ::= <any source character except "\" or newline or single quotes>

String literals are supported, but only as syntactic sugar for UTF-8 encoded arrays of u8 values. There is no character
type in Futhark, but character literals are interpreted as integers of the corresponding Unicode code point.

existential_size ::= "?" ("[" id "]")+ "." type

An existential size quantifier brings an unknown size into scope within a type. This can be used to encode constraints
for statically unknowable array sizes.

3.4 Declarations

A Futhark module consists of a sequence of declarations. Files are also modules. Each declaration is processed in
order, and a declaration can only refer to names bound by preceding declarations.

dec ::= val_bind | type_bind | mod_bind | mod_type_bind
| "open" mod_exp
| "import" stringlit
| "local" dec
| "#[" attr "]" dec

Any names defined by a declaration inside a module are by default visible to users of that module (see Modules).

• open mod_exp brings names bound in mod_exp into the current scope. These names will also be visible to
users of the module.

• local dec has the meaning of dec, but any names bound by dec will not be visible outside the module.

• import "foo" is a shorthand for local open import "foo", where the import is interpreted as a module
expression (see Modules).

• #[attr] dec adds an attribute to a declaration (see Attributes).

18 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

3.4.1 Declaring Functions and Values

val_bind ::= ("def" | "entry" | "let") (id | "(" binop ")") type_param* pat* [":" type] "=" exp
| ("def" | "entry" | "let") pat binop pat [":" type] "=" exp

Note: using let to define top-level bindings is deprecated.

Functions and constants must be defined before they are used. A function declaration must specify the name, parame-
ters, and body of the function:

def name params...: rettype = body

Hindley-Milner-style type inference is supported. A parameter may be given a type with the notation (name: type).
Functions may not be recursive. You may put size annotations in the return type and parameter types; see Size Types.
A function can be polymorphic by using type parameters, in the same way as for Type Abbreviations:

def reverse [n] 't (xs: [n]t): [n]t = xs[::-1]

Type parameters for a function do not need to cover the types of all parameters. The type checker will add more if
necessary. For example, the following is well typed:

def pair 'a (x: a) y = (x, y)

A new type variable will be invented for the parameter y.

Shape and type parameters are not passed explicitly when calling function, but are automatically derived. If an array
value v is passed for a type parameter t, all other arguments passed of type t must have the same shape as v. For example,
consider the following definition:

def pair 't (x: t) (y: t) = (x, y)

The application pair [1] [2,3] is ill-typed.

To simplify the handling of in-place updates (see In-place Updates), the value returned by a function may not alias any
global variables.

3.4.2 User-Defined Operators

Infix operators are defined much like functions:

def (p1: t1) op (p2: t2): rt = ...

For example:

def (a:i32,b:i32) +^ (c:i32,d:i32) = (a+c, b+d)

We can also define operators by enclosing the operator name in parentheses and suffixing the parameters, as an ordinary
function:

def (+^) (a:i32,b:i32) (c:i32,d:i32) = (a+c, b+d)

This is necessary when defining a polymorphic operator.

A valid operator name is a non-empty sequence of characters chosen from the string "+-*/%=!><&^". The fixity of
an operator is determined by its first characters, which must correspond to a built-in operator. Thus, +^ binds like +,
whilst *^ binds like *. The longest such prefix is used to determine fixity, so >>= binds like >>, not like >.

3.4. Declarations 19

Futhark User’s Guide, Release 0.24.3

It is not permitted to define operators with the names && or || (although these as prefixes are accepted). This is
because a user-defined version of these operators would not be short-circuiting. User-defined operators behave exactly
like ordinary functions, except for being infix.

A built-in operator can be shadowed (i.e. a new + can be defined). This will result in the built-in polymorphic operator
becoming inaccessible, except through the intrinsics module.

An infix operator can also be defined with prefix notation, like an ordinary function, by enclosing it in parentheses:

def (+) (x: i32) (y: i32) = x - y

This is necessary when defining operators that take type or shape parameters.

3.4.3 Entry Points

Apart from declaring a function with the keyword def, it can also be declared with entry. When the Futhark program
is compiled any top-level function declared with entry will be exposed as an entry point. If the Futhark program has
been compiled as a library, these are the functions that will be exposed. If compiled as an executable, you can use the
--entry-point command line option of the generated executable to select the entry point you wish to run.

Any top-level function named main will always be considered an entry point, whether it is declared with entry or not.

The name of an entry point must not contain an apostrophe ('), even though that is normally permitted in Futhark
identifiers.

3.4.4 Value Declarations

A named value/constant can be declared as follows:

def name: type = definition

The definition can be an arbitrary expression, including function calls and other values, although they must be in scope
before the value is defined. If the return type contains any anonymous sizes (see Size types), new existential sizes will
be constructed for them.

3.4.5 Type Abbreviations

type_bind ::= ("type" | "type^" | "type~") id type_param* "=" type
type_param ::= "[" id "]" | "'" id | "'~" id | "'^" id

Type abbreviations function as shorthands for the purpose of documentation or brevity. After a type binding type t1
= t2, the name t1 can be used as a shorthand for the type t2. Type abbreviations do not create distinct types: the
types t1 and t2 are entirely interchangeable.

If the right-hand side of a type contains existential sizes, it must be declared “size-lifted” with type~. If it (potentially)
contains a function, it must be declared “fully lifted” with type^. A lifted type can also contain existential sizes. Lifted
types cannot be put in arrays. Fully lifted types cannot be returned from conditional or loop expressions.

A type abbreviation can have zero or more parameters. A type parameter enclosed with square brackets is a size
parameter, and can be used in the definition as an array size, or as a size argument to other type abbreviations. When
passing an argument for a shape parameter, it must be enclosed in square brackets. Example:

type two_intvecs [n] = ([n]i32, [n]i32)

(continues on next page)

20 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

(continued from previous page)

def x: two_intvecs [2] = (iota 2, replicate 2 0)

Size parameters work much like shape declarations for arrays. Like shape declarations, they can be elided via square
brackets containing nothing. All size parameters must be used in the definition of the type abbreviation.

A type parameter prefixed with a single quote is a type parameter. It is in scope as a type in the definition of the type
abbreviation. Whenever the type abbreviation is used in a type expression, a type argument must be passed for the
parameter. Type arguments need not be prefixed with single quotes:

type two_vecs [n] 't = ([n]t, [n]t)
type two_intvecs [n] = two_vecs [n] i32
def x: two_vecs [2] i32 = (iota 2, replicate 2 0)

A size-lifted type parameter is prefixed with '~, and a fully lifted type parameter with '^. These have the same rules
and restrictions as lifted type abbreviations.

3.5 Expressions

Expressions are the basic construct of any Futhark program. An expression has a statically determined type, and
produces a value at runtime. Futhark is an eager/strict language (“call by value”).

The basic elements of expressions are called atoms, for example literals and variables, but also more complicated forms.

atom ::= literal
| qualid ("." fieldid)*
| stringlit
| charlit
| "(" ")"
| "(" exp ")" ("." fieldid)*
| "(" exp ("," exp)* ")"
| "{" "}"
| "{" field ("," field)* "}"
| qualid "[" index ("," index)* "]"
| "(" exp ")" "[" index ("," index)* "]"
| quals "." "(" exp ")"
| "[" exp ("," exp)* "]"
| "[" exp [".." exp] "..." exp "]"
| "(" qualbinop ")"
| "(" exp qualbinop ")"
| "(" qualbinop exp ")"
| "(" ("." field)+ ")"
| "(" "." "[" index ("," index)* "]" ")"
| "???"

exp ::= atom
| exp qualbinop exp
| exp exp
| "!" exp
| "-" exp
| constructor exp*
| exp ":" type
| exp ":>" type

3.5. Expressions 21

Futhark User’s Guide, Release 0.24.3

| exp [".." exp] "..." exp
| exp [".." exp] "..<" exp
| exp [".." exp] "..>" exp
| "if" exp "then" exp "else" exp
| "let" size* pat "=" exp "in" exp
| "let" id "[" index ("," index)* "]" "=" exp "in" exp
| "let" id type_param* pat+ [":" type] "=" exp "in" exp
| "(" "\" pat+ [":" type] "->" exp ")"
| "loop" pat ["=" exp] loopform "do" exp
| "#[" attr "]" exp
| "unsafe" exp
| "assert" atom atom
| exp "with" "[" index ("," index)* "]" "=" exp
| exp "with" fieldid ("." fieldid)* "=" exp
| "match" exp ("case" pat "->" exp)+

field ::= fieldid "=" exp
| id

size ::= "[" id "]"
pat ::= id

| pat_literal
| "_"
| "(" ")"
| "(" pat ")"
| "(" pat ("," pat)+ ")"
| "{" "}"
| "{" fieldid ["=" pat] ("," fieldid ["=" pat])* "}"
| constructor pat*
| pat ":" type
| "#[" attr "]" pat

pat_literal ::= ["-"] intnumber
| ["-"] floatnumber
| charlit
| "true"
| "false"

loopform ::= "for" id "<" exp
| "for" pat "in" exp
| "while" exp

index ::= exp [":" [exp]] [":" [exp]]
| [exp] ":" exp [":" [exp]]
| [exp] [":" exp] ":" [exp]

Some of the built-in expression forms have parallel semantics, but it is not guaranteed that the the parallel constructs
in Futhark are evaluated in parallel, especially if they are nested in complicated ways. Their purpose is to give the
compiler as much freedom and information is possible, in order to enable it to maximise the efficiency of the generated
code.

22 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

3.5.1 Resolving Ambiguities

The above grammar contains some ambiguities, which in the concrete implementation is resolved via a combination
of lexer and grammar transformations. For ease of understanding, they are presented here in natural text.

• An expression x.ymay either be a reference to the name y in the module x, or the field y in the record x. Modules
and values occupy the same name space, so this is disambiguated by whether x is a value or module.

• A type ascription (exp : type) cannot appear as an array index, as it conflicts with the syntax for slicing.

• In f [x], there is am ambiguity between indexing the array f at position x, or calling the function f with the
singleton array x. We resolve this the following way:

– If there is a space between f and the opening bracket, it is treated as a function application.

– Otherwise, it is an array index operation.

• An expression (-x) is parsed as the variable x negated and enclosed in parentheses, rather than an operator
section partially applying the infix operator -.

• Function and type application, and prefix operators, bind more tightly than any infix operator. Note that the
only prefix operators are the builtin ! and -, and more cannot be defined. In particular, a user-defined operator
beginning with ! binds as !=, as on the table below, not as the prefix operator !

• #foo #bar is interpreted as a constructor with a #bar payload, not as applying #foo to #bar (the latter would
be semantically invalid anyway).

• A type application pt [n]t is parsed as an application of the type constructor pt to the size argument [n] and
the type t. To pass a single array-typed parameter, enclose it in parens.

• The following table describes the precedence and associativity of infix operators in both expressions and type
expressions. All operators in the same row have the same precedence. The rows are listed in increasing order of
precedence. Note that not all operators listed here are used in expressions; nevertheless, they are still used for
resolving ambiguities.

Associativity Operators
left ,
left :, :>
left `op`
left ||
left &&
left <= >= > < == != ! =
left & ^ |
left << >>
left + -
left * / % // %%
left |>
right <|
right ->
left juxtaposition

3.5. Expressions 23

Futhark User’s Guide, Release 0.24.3

3.5.2 Patterns

We say that a pattern is irrefutable if it can never fail to match a value of the appropriate type. Concretely, this means
that it does not require any specific sum type constructor (unless the type in question has only a single constructor),
or any specific numeric or boolean literal. Patterns used in function parameters and let bindings must be irrefutable.
Patterns used in case need not be irrefutable.

A pattern _ matches any value. A pattern consisting of a literal value (e.g. a numeric constant) matches exactly that
value.

3.5.3 Semantics of Simple Expressions

literal

Evaluates to itself.

qualid

A variable name; evaluates to its value in the current environment.

stringlit

Evaluates to an array of type []u8 that contains the characters encoded as UTF-8.

()

Evaluates to an empty tuple.

(e)

Evaluates to the result of e.

???

A typed hole, usable as a placeholder expression. The type checker will infer any necessary type for this expression.
This can sometimes result in an ambiguous type, which can be resolved using a type ascription. Evaluating a typed
hole results in a run-time error.

(e1, e2, ..., eN)

Evaluates to a tuple containing N values. Equivalent to the record literal {0=e1, 1=e2, ..., N-1=eN}.

24 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

{f1, f2, ..., fN}

A record expression consists of a comma-separated sequence of field expressions. Each field expression defines the
value of a field in the record. A field expression can take one of two forms:

f = e: defines a field with the name f and the value resulting from evaluating e.

f: defines a field with the name f and the value of the variable f in scope.

Each field may only be defined once.

a[i]

Return the element at the given position in the array. The index may be a comma-separated list of indexes instead of
just a single index. If the number of indices given is less than the rank of the array, an array is returned. The index may
be of any unsigned integer type.

The array a must be a variable name or a parenthesised expression. Furthermore, there may not be a space between
a and the opening bracket. This disambiguates the array indexing a[i], from a [i], which is a function call with a
literal array.

a[i:j:s]

Return a slice of the array a from index i to j, the former inclusive and the latter exclusive, taking every s-th element.
The s parameter may not be zero. If s is negative, it means to start at i and descend by steps of size s to j (not
inclusive). Slicing can be done only with expressions of type i64.

It is generally a bad idea for s to be non-constant. Slicing of multiple dimensions can be done by separating with
commas, and may be intermixed freely with indexing.

If s is elided it defaults to 1. If i or j is elided, their value depends on the sign of s. If s is positive, i become 0 and
j become the length of the array. If s is negative, i becomes the length of the array minus one, and j becomes minus
one. This means that a[::-1] is the reverse of the array a.

In the general case, the size of the array produced by a slice is unknown (see Size types). In a few cases, the size is
known statically:

• a[0:n] has size n

• a[:n] has size n

• a[0:n:1] has size n

• a[:n:1] has size n

This holds only if n is a variable or constant.

[x, y, z]

Create an array containing the indicated elements. Each element must have the same type and shape.

3.5. Expressions 25

Futhark User’s Guide, Release 0.24.3

x..y...z

Construct a signed integer array whose first element is x and which proceeds with a stride of y-x until reaching z
(inclusive). The ..y part can be elided in which case a stride of 1 is used. A run-time error occurs if z is less than x
or y, or if x and y are the same value.

In the general case, the size of the array produced by a range is unknown (see Size types). In a few cases, the size is
known statically:

• 1..2...n has size n

This holds only if n is a variable or constant.

x..y..<z

Construct a signed integer array whose first elements is x, and which proceeds upwards with a stride of y-x until
reaching z (exclusive). The ..y part can be elided in which case a stride of 1 is used. A run-time error occurs if z is
less than x or y, or if x and y are the same value.

• 0..1..<n has size n

• 0..<n has size n

This holds only if n is a variable or constant.

x..y..>z

Construct a signed integer array whose first elements is x, and which proceeds downwards with a stride of y-x until
reaching z (exclusive). The ..y part can be elided in which case a stride of -1 is used. A run-time error occurs if z is
greater than x or y, or if x and y are the same value.

e.f

Access field f of the expression e, which must be a record or tuple.

m.(e)

Evaluate the expression e with the module m locally opened, as if by open. This can make some expressions easier to
read and write, without polluting the global scope with a declaration-level open.

x binop y

Apply an operator to x and y. Operators are functions like any other, and can be user-defined. Futhark pre-defines
certain “magical” overloaded operators that work on several types. Overloaded operators cannot be defined by the
user. Both operands must have the same type. The predefined operators and their semantics are:

**

Power operator, defined for all numeric types.

//, %%

Division and remainder on integers, with rounding towards zero.

*, /, %, +, -

26 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

The usual arithmetic operators, defined for all numeric types. Note that / and % rounds towards
negative infinity when used on integers - this is different from in C.

^, &, |, >>, <<

Bitwise operators, respectively bitwise xor, and, or, arithmetic shift right and left, and logical
shift right. Shifting is undefined if the right operand is negative, or greater than or equal
to the length in bits of the left operand.

Note that, unlike in C, bitwise operators have higher priority than arithmetic operators. This
means that x & y == z is understood as (x & y) == z, rather than x & (y == z) as it
would in C. Note that the latter is a type error in Futhark anyhow.

==, !=

Compare any two values of builtin or compound type for equality.

<, <=. >, >=

Company any two values of numeric type for equality.

`op`

Use op, which may be any non-operator function name, as an infix operator.

x && y

Short-circuiting logical conjunction; both operands must be of type bool.

x || y

Short-circuiting logical disjunction; both operands must be of type bool.

f x

Apply the function f to the argument x.

#c x y z

Apply the sum type constructor #x to the payload x, y, and z. A constructor application is always assumed to be
saturated, i.e. its entire payload provided. This means that constructors may not be partially applied.

e : t

Annotate that e is expected to be of type t, failing with a type error if it is not. If t is an array with shape declarations,
the correctness of the shape declarations is checked at run-time.

Due to ambiguities, this syntactic form cannot appear as an array index expression unless it is first enclosed in paren-
theses. However, as an array index must always be of type i64, there is never a reason to put an explicit type ascription
there.

3.5. Expressions 27

Futhark User’s Guide, Release 0.24.3

e :> t

Coerce the size of e to t. The type of t must match the type of e, except that the sizes may be statically different. At
run-time, it will be verified that the sizes are the same.

! x

Logical negation if x is of type bool. Bitwise negation if x is of integral type.

- x

Numerical negation of x, which must be of numeric type.

#[attr] e

Apply the given attribute to the expression. Attributes are an ad-hoc and optional mechanism for providing extra
information, directives, or hints to the compiler. See Attributes for more information.

unsafe e

Elide safety checks and assertions (such as bounds checking) that occur during execution of e. This is useful if the
compiler is otherwise unable to avoid bounds checks (e.g. when using indirect indexes), but you really do not want
them there. Make very sure that the code is correct; eliding such checks can lead to memory corruption.

This construct is deprecated. Use the #[unsafe] attribute instead.

assert cond e

Terminate execution with an error if cond evaluates to false, otherwise produce the result of evaluating e. Unless e
produces a value that is used subsequently (it can just be a variable), dead code elimination may remove the assertion.

a with [i] = e

Return a, but with the element at position i changed to contain the result of evaluating e. Consumes a.

r with f = e

Return the record r, but with field f changed to have value e. The type of the field must remain unchanged. Type
inference is limited: r must have a completely known type up to f. This sometimes requires extra type annotations to
make the type of r known.

28 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

if c then a else b

If c evaluates to true, evaluate a, else evaluate b.

3.5.4 Binding Expressions

let pat = e in body

Evaluate e and bind the result to the irrefutable pattern pat (see Patterns) while evaluating body. The in keyword is
optional if body is a let expression. The binding is not let-generalised, meaning it has a monomorphic type. This can
be significant if e is of functional type.

let [n] pat = e in body

As above, but bind sizes (here n) used in the pattern (here to the size of the array being bound). All sizes must be used
in the pattern. Roughly Equivalent to let f [n] pat = body in f e.

let a[i] = v in body

Write v to a[i] and evaluate body. The given index need not be complete and can also be a slice, but in these cases,
the value of v must be an array of the proper size. This notation is Syntactic sugar for let a = a with [i] = v
in a.

let f params... = e in body

Bind f to a function with the given parameters and definition (e) and evaluate body. The function will be treated as
aliasing any free variables in e. The function is not in scope of itself, and hence cannot be recursive.

loop pat = initial for x in a do loopbody

1. Bind pat to the initial values given in initial.

2. For each element x in a, evaluate loopbody and rebind pat to the result of the evaluation.

3. Return the final value of pat.

The = initial can be left out, in which case initial values for the pattern are taken from equivalently named variables
in the environment. I.e., loop (x) = ... is equivalent to loop (x = x) =

loop pat = initial for x < n do loopbody

Equivalent to loop (pat = initial) for x in [0..1..<n] do loopbody.

3.5. Expressions 29

Futhark User’s Guide, Release 0.24.3

loop pat = initial while cond do loopbody

1. Bind pat to the initial values given in initial.

2. If cond evaluates to true, bind pat to the result of evaluating loopbody, and repeat the step.

3. Return the final value of pat.

match x case p1 -> e1 case p2 -> e2

Match the value produced by x to each of the patterns in turn, picking the first one that succeeds. The result of the
corresponding expression is the value of the entire match expression. All the expressions associated with a case must
have the same type (but not necessarily match the type of x). It is a type error if there is not a case for every possible
value of x - inexhaustive pattern matching is not allowed.

3.5.5 Function Expressions

\x y z: t -> e

Produces an anonymous function taking parameters x, y, and z, returns type t, and whose body is e. Lambdas do not
permit type parameters; use a named function if you want a polymorphic function.

(binop)

An operator section that is equivalent to \x y -> x *binop* y.

(x binop)

An operator section that is equivalent to \y -> x *binop* y.

(binop y)

An operator section that is equivalent to \x -> x *binop* y.

(.a.b.c)

An operator section that is equivalent to \x -> x.a.b.c.

(.[i,j])

An operator section that is equivalent to \x -> x[i,j].

30 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

3.6 Higher-order functions

At a high level, Futhark functions are values, and can be used as any other value. However, to ensure that the compiler
is able to compile the higher-order functions efficiently via defunctionalisation, certain type-driven restrictions exist
on how functions can be used. These also apply to any record or tuple containing a function (a functional type):

• Arrays of functions are not permitted.

• A function cannot be returned from an if expression.

• A loop parameter cannot be a function.

Further, type parameters are divided into non-lifted (bound with an apostrophe, e.g. 't), size-lifted ('~t), and fully
lifted ('^t). Only fully lifted type parameters may be instantiated with a functional type. Within a function, a lifted
type parameter is treated as a functional type.

See also In-place updates for details on how consumption interacts with higher-order functions.

3.7 Type Inference

Futhark supports Hindley-Milner-style type inference, so in many cases explicit type annotations can be left off. Record
field projection cannot in isolation be fully inferred, and may need type annotations where their inputs are bound. The
same goes when constructing sum types, as Futhark cannot assume that a given constructor only belongs to a single
type. Further, consumed parameters (see In-place updates) must be explicitly annotated.

Type inference processes top-level declared in top-down order, and the type of a top-level function must be completely
inferred at its definition site. Specifically, if a top-level function uses overloaded arithmetic operators, the resolution of
those overloads cannot be influenced by later uses of the function.

Local bindings made with let are not made polymorphic through let-generalisation unless they are syntactically func-
tions, meaning they have at least one named parameter.

3.8 Size Types

Futhark supports a simple system of size-dependent types that statically verifies that the sizes of arrays passed to a
function are compatible. The focus is on simplicity, not completeness.

Whenever a pattern occurs (in let, loop, and function parameters), as well as in return types, size annotations may be
used to express invariants about the shapes of arrays that are accepted or produced by the function. For example:

def f [n] (a: [n]i32) (b: [n]i32): [n]i32 =
map2 (+) a b

We use a size parameter, [n], to explicitly quantify sizes. The [n] parameter is not explicitly passed when calling f.
Rather, its value is implicitly deduced from the arguments passed for the value parameters. An array type can contain
anonymous dimensions, e.g. []i32, for which the type checker will invent fresh size parameters, which ensures that all
arrays have a (symbolic) size. On the right-hand side of a function arrow (“return types”), this results in an existential
size that is not known until the function is fully applied, e.g:

val filter [n] 'a : (p: a -> bool) -> (as: [n]a) -> ?[k].[k]a

A size annotation can also be an integer constant (with no suffix). Size parameters can be used as ordinary variables
within the scope of the parameters. The type checker verifies that the program obeys any constraints imposed by size
annotations.

3.6. Higher-order functions 31

Futhark User’s Guide, Release 0.24.3

Size-dependent types are supported, as the names of parameters can be used in the return type of a function:

def replicate 't (n: i64) (x: t): [n]t = ...

An application replicate 10 0 will have type [10]i32.

Whenever we write a type [n]t, n must already be a variable of type i64 in scope (possibly by being bound as a size
parameter).

3.8.1 Unknown sizes

Since sizes must be constants or variables, there are many cases where the type checker cannot assign a precise size to
the result of some operation. For example, the type of concat should conceptually be:

val concat [n] [m] 't : [n]t -> [m]t -> [n+m]t

But this is not presently allowed. Instead, the return type contains an existential size:

val concat [n] [m] 't : [n]t -> [m]t -> ?[k].[k]t

When an application concat xs ys is found, the result will be of type [k']t, where k' is a fresh unknown size
variable that is considered distinct from every other size in the program. It is often necessary to perform a size coercion
(see Size coercion) to convert an unknown size to a known size.

Generally, unknown sizes are constructed whenever the true size cannot be expressed. The following lists all possible
sources of unknown sizes.

Size going out of scope

An unknown size is created when the proper size of an array refers to a name that has gone out of scope:

let c = a + b
in replicate c 0

The type of replicate c 0 is [c]i32, but since c is locally bound, the type of the entire expression is [k]i32 for
some fresh k.

Compound expression passed as function argument

Intuitively, the type of replicate (x+y) 0 should be [x+y]i32, but since sizes must be names or constants, this is
not expressible. Therefore an unknown size variable is created and the size of the expression becomes [k]i32.

Compound expression used as range bound

While a simple range expression such as 0..<n can be assigned type [n]i32, a range expression 0..<(n+1) will give
produce an unknown size.

32 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

Complex slicing

Most complex array slicing, such as xs[a:b], will have an unknown size. Exceptions are listed in the reference for
slice expressions.

Complex ranges

Most complex ranges, such as a..<b, will have an unknown size. Exceptions exist for general ranges and “upto”
ranges.

Existential size in function return type

Whenever the result of a function application has an existential size, that size is replaced with a fresh unknown size
variable.

For example, filter has the following type:

val filter [n] 'a : (p: a -> bool) -> (as: [n]a) -> ?[k].[k]a

For an application filter f xs, the type checker invents a fresh unknown size k', and the actual type for this specific
application will be [k']a.

Branches of if return arrays of different sizes

When an if (or match) expression has branches that returns array of different sizes, the differing sizes will be replaced
with fresh unknown sizes. For example:

if b then [[1,2], [3,4]]
else [[5,6]]

This expression will have type [k][2]i32, for some fresh k.

Important: The check whether the sizes differ is done when first encountering the if or match during type checking.
At this point, the type checker may not realise that the two sizes are actually equal, even though constraints later in the
function force them to be. This can always be resolved by adding type annotations.

An array produced by a loop does not have a known size

If the size of some loop parameter is not maintained across a loop iteration, the final result of the loop will contain
unknown sizes. For example:

loop xs = [1] for i < n do xs ++ xs

Similar to conditionals, the type checker may sometimes be too cautious in assuming that some size may change during
the loop. Adding type annotations to the loop parameter can be used to resolve this.

3.8. Size Types 33

Futhark User’s Guide, Release 0.24.3

3.8.2 Size coercion

Size coercion, written with :>, can be used to perform a runtime-checked coercion of one size to another. Since size
annotations can refer only to variables and constants, this is necessary when writing more complicated size functions:

def concat_to 'a (m: i32) (a: []a) (b: []a) : [m]a =
a ++ b :> [m]a

Only expression-level type annotations give rise to run-time checks. Despite their similar syntax, parameter and return
type annotations must be valid at compile-time, or type checking will fail.

3.8.3 Causality restriction

Conceptually, size parameters are assigned their value by reading the sizes of concrete values passed along as parame-
ters. This means that any size parameter must be used as the size of some parameter. This is an error:

def f [n] (x: i32) = n

The following is not an error:

def f [n] (g: [n]i32 -> [n]i32) = ...

However, using this function comes with a constraint: whenever an application f x occurs, the value of the size param-
eter must be inferable. Specifically, this value must have been used as the size of an array before the f x application is
encountered. The notion of “before” is subtle, as there is no evaluation ordering of a Futhark expression, except that
a let-binding is always evaluated before its body, the argument to a function is always evaluated before the function
itself, and the left operand to an operator is evaluated before the right.

The causality restriction only occurs when a function has size parameters whose first use is not as a concrete array size.
For example, it does not apply to uses of the following function:

def f [n] (arr: [n]i32) (g: [n]i32 -> [n]i32) = ...

This is because the proper value of n can be read directly from the actual size of the array.

3.8.4 Empty array literals

Just as with size-polymorphic functions, when constructing an empty array, we must know the exact size of the (missing)
elements. For example, in the following program we are forcing the elements of a to be the same as the elements of b,
but the size of the elements of b are not known at the time a is constructed:

def main (b: bool) (xs: []i32) =
let a = [] : [][]i32
let b = [filter (>0) xs]
in a[0] == b[0]

The result is a type error.

34 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

3.8.5 Sum types

When constructing a value of a sum type, the compiler must still be able to determine the size of the constructors that
are not used. This is illegal:

type sum = #foo ([]i32) | #bar ([]i32)

def main (xs: *[]i32) =
let v : sum = #foo xs
in xs

3.8.6 Modules

When matching a module with a module type (see Modules), a non-lifted abstract type (i.e. one that is declared with
type rather than type^) may not be implemented by a type abbreviation that contains any existential sizes. This is to
ensure that if we have the following:

module m : { type t } = ...

Then we can construct an array of values of type m.t without worrying about constructing an irregular array.

3.8.7 Higher-order functions

When a higher-order function takes a functional argument whose return type is a non-lifted type parameter, any instan-
tiation of that type parameter must have a non-existential size. If the return type is a lifted type parameter, then the
instantiation may contain existential sizes. This is why the type of map guarantees regular arrays:

val map [n] 'a 'b : (a -> b) -> [n]a -> [n]b

The type parameter b can only be replaced with a type that has non-existential sizes, which means they must be the
same for every application of the function. In contrast, this is the type of the pipeline operator:

val (|>) '^a -> '^b : a -> (a -> b) -> b

The provided function can return something with an existential size (such as filter).

A function whose return type has an unknown size

If a function (named or anonymous) is inferred to have a return type that contains an unknown size variable created
within the function body, that size variable will be replaced with an existential size. In most cases this is not important,
but it means that an expression like the following is ill-typed:

map (\xs -> iota (length xs)) (xss : [n][m]i32)

This is because the (length xs) expression gives rise to some fresh size k. The lambda is then assigned the type
[n]t -> [k]i32, which is immediately turned into [n]t -> ?[k].[k]i32 because kwas generated inside its body.
A function of this type cannot be passed to map, as explained before. The solution is to bind length to a name before
the lambda.

3.8. Size Types 35

Futhark User’s Guide, Release 0.24.3

3.8.8 Sizes in type abbreviations

When anonymous sizes are passed to type abbreviations, if that anonymous size is eventually instantiated with an
existential size, the same existential size is going to be used for all instances of the corresponding parameter in the
right-hand-side of the type abbreviation. Note that this breaks with the usual conception of type abbreviations as
purely a shorthand, as this could not be expressed without the abbreviation. Example:

type square [n] = [n][n]i32

The following function is be known to return a square array:

val f : () -> square []

But this is not the case for the function that inlines the definition of square:

val g : () -> [][]i32

As this above would be elaborated as follows:

val g : () -> ?[n][m].[n][m]i32

We can of course explicitly write that the function returns a square array of existential size:

val g : () -> ?[n].[n]i32

3.9 In-place Updates

In-place updates do not provide observable side effects, but they do provide a way to efficiently update an array in-place,
with the guarantee that the cost is proportional to the size of the value(s) being written, not the size of the full array.

The a with [i] = v language construct, and derived forms, performs an in-place update. The compiler verifies that
the original array (a) is not used on any execution path following the in-place update. This involves also checking that
no alias of a is used. Generally, most language constructs produce new arrays, but some (slicing) create arrays that
alias their input arrays.

When defining a function parameter we can mark it as consuming by prefixing it with an asterisk. For a return type,
we can mark it as alias-free by prefixing it with an asterisk. For example:

def modify (a: *[]i32) (i: i32) (x: i32): *[]i32 =
a with [i] = a[i] + x

A parameter that is not consuming is called observing. In the parameter declaration a: *[i32], the asterisk means
that the function modify has been given “ownership” of the array a, meaning that any caller of modify will never
reference array a after the call again. This allows the with expression to perform an in-place update. After a call
modify a i x, neither a or any variable that aliases a may be used on any following execution path.

If an asterisk is present at any point inside a tuple parameter type, the parameter as a whole is considered consuming.
For example:

def consumes_both ((a,b): (*[]i32,[]i32)) = ...

This is usually not desirable behaviour. Use multiple parameters instead:

def consumes_first_arg (a: *[]i32) (b: []i32) = ...

36 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

For bulk in-place updates with multiple values, use the scatter function in the basis library.

3.9.1 Alias Analysis

The rules used by the Futhark compiler to determine aliasing are intuitive in the intra-procedural case. Aliases are
associated with entire arrays. Aliases of a record are tuple are tracked for each element, not for the record or tuple
itself. Most constructs produce fresh arrays, with no aliases. The main exceptions are if, loop, function calls, and
variable literals.

• After a binding let a = b, that simply assigns a new name to an existing variable, the variable a aliases b.
Similarly for record projections and patterns.

• The result of an if aliases the union of the aliases of the components.

• The result of a loop aliases the initial values, as well as any aliases that the merge parameters may assume at the
end of an iteration, computed to a fixed point.

• The aliases of a value returned from a function is the most interesting case, and depends on whether the return
value is declared alias-free (with an asterisk *) or not. If it is declared alias-free, then it has no aliases. Otherwise,
it aliases all arguments passed for non-consumed parameters.

3.9.2 In-place Updates and Higher-Order Functions

Consumption generally interacts inflexibly with higher-order functions. The issue is that we cannot control how many
times a function argument is applied, or to what, so it is not safe to pass a function that consumes its argument. The
following two conservative rules govern the interaction between consumption and higher-order functions:

1. In the expression let p = e1 in ..., if any in-place update takes place in the expression e1, the value bound
by p must not be or contain a function.

2. A function that consumes one of its arguments may not be passed as a higher-order argument to another function.

3.10 Modules

mod_bind ::= "module" id mod_param* "=" [":" mod_type_exp] "=" mod_exp
mod_param ::= "(" id ":" mod_type_exp ")"
mod_type_bind ::= "module" "type" id "=" mod_type_exp

Futhark supports an ML-style higher-order module system. Modules can contain types, functions, and other modules
and module types. Module types are used to classify the contents of modules, and parametric modules are used to
abstract over modules (essentially module-level functions). In Standard ML, modules, module types and parametric
modules are called structs, signatures, and functors, respectively. Module names exist in the same name space as values,
but module types are their own name space.

3.10. Modules 37

Futhark User’s Guide, Release 0.24.3

3.10.1 Module bindings

module m = mod_exp

Binds m to the module produced by the module expression mod_exp. Any name x in the module produced by mod_exp
can then be accessed with m.x.

module m : mod_type_exp = mod_exp

Shorthand for module m = mod_exp : mod_type_exp.

module m mod_params... = mod_exp

Shorthand for module m = \mod_params... -> mod_exp. This produces a parametric module.

module type mt = mod_type_exp

Binds mt to the module type produced by the module type expression mod_type_exp.

3.10.2 Module Expressions

mod_exp ::= qualid
| mod_exp ":" mod_type_exp
| "\" "(" id ":" mod_type_exp ")" [":" mod_type_exp] "->" mod_exp
| mod_exp mod_exp
| "(" mod_exp ")"
| "{" dec* "}"
| "import" stringlit

A module expression produces a module. Modules are collections of bindings produced by declarations (dec). In
particular, a module may contain other modules or module types.

qualid

Evaluates to the module of the given name.

38 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

(mod_exp)

Evaluates to mod_exp.

mod_exp : mod_type_exp

Module ascription evaluates the module expression and the module type expression, verifies that the module implements
the module type, then returns a module that exposes only the functionality described by the module type. This is how
internal details of a module can be hidden.

\(p: mt1): mt2 -> e

Constructs a parametric module (a function at the module level) that accepts a parameter of module type mt1 and
returns a module of type mt2. The latter is optional, but the parameter type is not.

e1 e2

Apply the parametric module m1 to the module m2.

{ decs }

Returns a module that contains the given definitions. The resulting module defines any name defined by any declaration
that is not local, in particular including names made available via open.

import "foo"

Returns a module that contains the definitions of the file "foo" relative to the current file.

3.10.3 Module Type Expressions

mod_type_exp ::= qualid
| "{" spec* "}"
| mod_type_exp "with" qualid type_param* "=" type
| "(" mod_type_exp ")"
| "(" id ":" mod_type_exp ")" "->" mod_type_exp
| mod_type_exp "->" mod_type_exp

spec ::= "val" id type_param* ":" type
| "val" binop type_param* ":" type
| ("type" | "type^" | "type~") id type_param* "=" type
| ("type" | "type^" | "type~") id type_param*
| "module" id ":" mod_type_exp
| "include" mod_type_exp
| "#[" attr "]" spec

Module types classify modules, with the only (unimportant) difference in expressivity being that modules can contain
module types, but module types cannot specify that a module must contain a specific module type. They can specify

3.10. Modules 39

Futhark User’s Guide, Release 0.24.3

of course that a module contains a submodule of a specific module type.

A module type expression can be the name of another module type, or a sequence of specifications, or specs, enclosed
in curly braces. A spec can be a value spec, indicating the presence of a function or value, an abstract type spec, or a
type abbreviation spec.

In a value spec, sizes in types on the left-hand side of a function arrow must not be anonymous. For example, this is
forbidden:

val sum: []t -> t

Instead write:

val sum [n]: [n]t -> t

But this is allowed, because the empty size is not to the left of a function arrow:

val evens [n]: [n]i32 -> []i32

3.11 Referencing Other Files

You can refer to external files in a Futhark file like this:

import "file"

The above will include all non-local top-level definitions from file.fut is and make them available in the current
file (but will not export them). The .fut extension is implied.

You can also include files from subdirectories:

import "path/to/a/file"

The above will include the file path/to/a/file.fut relative to the including file.

Qualified imports are also possible, where a module is created for the file:

module M = import "file"

In fact, a plain import "file" is equivalent to:

local open import "file"

To re-export names from another file in the current module, use:

open import "file"

40 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

3.12 Attributes

attr ::= id
| decimal
| id "(" [attr ("," attr)*] ")"

An expression, declaration, pattern, or module type spec can be prefixed with an attribute, written as #[attr]. This
may affect how it is treated by the compiler or other tools. In no case will attributes affect or change the semantics of a
program, but it may affect how well it compiles and runs (or in some cases, whether it compiles or runs at all). Unknown
attributes are silently ignored. Most have no effect in the interpreter. An attribute can be either an atom, written as an
identifier or number, or compound, consisting of an identifier and a comma-separated sequence of attributes. The latter
is used for grouping and encoding of more complex information.

3.12.1 Expression attributes

Many expression attributes affect second-order array combinators (SOACS). These must be applied to a fully saturated
function application or they will have no effect. If two SOACs with contradictory attributes are combined through
fusion, it is unspecified which attributes take precedence.

The following expression attributes are supported.

trace

Print the value produced by the attributed expression. Used for debugging. Somewhat unreliable outside of the inter-
preter, and in particular does not work for GPU device code.

trace(tag)

Like trace, but prefix output with tag, which must lexically be an identifier.

break

In the interpreter, pause execution before evaluating the expression. No effect for compiled code.

opaque

The compiler will treat the attributed expression as a black box. This is used to work around optimisation deficiencies
(or bugs), although it should hopefully rarely be necessary.

incremental_flattening(no_outer)

When using incremental flattening, do not generate the “only outer parallelism” version for the attributed SOACs.

3.12. Attributes 41

Futhark User’s Guide, Release 0.24.3

incremental_flattening(no_intra)

When using incremental flattening, do not generate the “intra-group parallelism” version for the attributed SOACs.

incremental_flattening(only_intra)

When using incremental flattening, only generate the “intra-group parallelism” version of the attributed SOACs. Be-
ware: the resulting program will fail to run if the inner parallelism does not fit on the device.

incremental_flattening(only_inner)

When using incremental flattening, do not generate multiple versions for this SOAC, but do exploit inner parallelism
(which may give rise to multiple versions at deeper levels).

noinline

Do not inline the attributed function application. If used within a parallel construct (e.g. map), this will likely prevent
the GPU backends from generating working code.

sequential

Fully sequentialise the attributed SOAC.

sequential_outer

Turn the outer parallelism in the attributed SOAC sequential, but preserve any inner parallelism.

sequential_inner

Exploit only outer parallelism in the attributed SOAC.

unroll

Fully unroll the attributed loop. If the compiler cannot determine the exact number of iterations (possibly after other
optimisations and simplifications have taken place), then this attribute has no code generation effect, but instead results
in a warning. Be very careful with this attribute: it can massively increase program size (possibly crashing the compiler)
if the loop has a huge number of iterations.

unsafe

Do not perform any dynamic safety checks (such as bound checks) during execution of the attributed expression.

42 Chapter 3. Language Reference

Futhark User’s Guide, Release 0.24.3

warn(safety_checks)

Make the compiler issue a warning if the attributed expression (or its subexpressions) requires safety checks (such as
bounds checking) at run-time. This is used for performance-critical code where you want to be told when the compiler
is unable to statically verify the safety of all operations.

3.12.2 Declaration attributes

The following declaration attributes are supported.

noinline

Do not inline any calls to this function. If the function is then used within a parallel construct (e.g. map), this will likely
prevent the GPU backends from generating working code.

inline

Always inline calls to this function.

3.12.3 Pattern attributes

No pattern attributes are currently supported by the compiler itself, although they are syntactically permitted and may
be used by other tools.

3.12.4 Spec attributes

No spec attributes are currently supported by the compiler itself, although they are syntactically permitted and may be
used by other tools.

3.12. Attributes 43

Futhark User’s Guide, Release 0.24.3

44 Chapter 3. Language Reference

CHAPTER

FOUR

C API REFERENCE

A Futhark program futlib.fut compiled to a C library with the --library command line option produces two files:
futlib.c and futlib.h. The API provided in the .h file is documented in the following.

The .h file can be included by a C++ source file to access the functions (extern "C" is added automatically), but the
.c file must be compiled with a proper C compiler and the resulting object file linked with the rest of the program.

Using the API requires creating a configuration object, which is then used to obtain a context object, which is then used
to perform most other operations, such as calling Futhark functions.

Most functions that can fail return an integer: 0 on success and a non-zero value on error, as documented below. Others
return a NULL pointer. Use futhark_context_get_error() to get a (possibly) more precise error message.

FUTHARK_BACKEND_foo

A preprocessor macro identifying that the backend foo was used to generate the code; e.g. c, opencl, or cuda.
This can be used for conditional compilation of code that only works with specific backends.

4.1 Error codes

Most errors are result in a not otherwise specified nonzero return code, but a few classes of errors have distinct error
codes.

FUTHARK_SUCCESS

Defined as 0. Returned in case of success.

FUTHARK_PROGRAM_ERROR

Defined as 2. Returned when the program fails due to out-of-bounds, an invalid size coercion, invalid entry point
arguments, or similar misuse.

FUTHARK_OUT_OF_MEMORY

Defined as 3. Returned when the program fails to allocate memory. This is (somewhat) reliable only for GPU
memory - due to overcommit and other VM tricks, you should not expect running out of main memory to be
reported gracefully.

45

Futhark User’s Guide, Release 0.24.3

4.2 Configuration

Context creation is parameterised by a configuration object. Any changes to the configuration must be made before
calling futhark_context_new(). A configuration object must not be freed before any context objects for which it is
used. The same configuration may not be used for multiple concurrent contexts.

struct futhark_context_config
An opaque struct representing a Futhark configuration.

struct futhark_context_config *futhark_context_config_new(void)
Produce a new configuration object. You must call futhark_context_config_free() when you are done
with it.

void futhark_context_config_free(struct futhark_context_config *cfg)
Free the configuration object.

void futhark_context_config_set_debugging(struct futhark_context_config *cfg, int flag)
With a nonzero flag, enable various debugging information, with the details specific to the backend. This may
involve spewing copious amounts of information to the standard error stream. It is also likely to make the program
run much slower.

void futhark_context_config_set_profiling(struct futhark_context_config *cfg, int flag)
With a nonzero flag, enable the capture of profiling information. This should not significantly impact pro-
gram performance. Use futhark_context_report() to retrieve captured information, the details of which
are backend-specific.

void futhark_context_config_set_logging(struct futhark_context_config *cfg, int flag)
With a nonzero flag, print a running log to standard error of what the program is doing.

int futhark_context_config_set_tuning_param(struct futhark_context_config *cfg, const char *param_name,
size_t new_value)

Set the value of a tuning parameter. Returns zero on success, and non-zero if the parameter cannot be set. This is
usually because a parameter of the given name does not exist. See futhark_get_tuning_param_count() and
futhark_get_tuning_param_name() for how to query which parameters are available. Most of the tuning
parameters are applied only when the context is created, but some may be changed even after the context is
active. At the moment, only parameters of class “threshold” may change after the context has been created. Use
futhark_get_tuning_param_class() to determine the class of a tuning parameter.

int futhark_get_tuning_param_count(void)
Return the number of available tuning parameters. Useful for knowing how to call
futhark_get_tuning_param_name() and futhark_get_tuning_param_class().

const char *futhark_get_tuning_param_name(int i)
Return the name of tuning parameter i, counting from zero.

const char *futhark_get_tuning_param_class(int i)
Return the class of tuning parameter i, counting from zero.

void futhark_context_config_set_cache_file(struct futhark_context_config *cfg, const char *fname)
Ask the Futhark context to use a file with the designated file as a cross-execution cache. This can result in faster
initialisation of the program next time it is run. For example, the GPU backends will store JIT-compiled GPU
code in this file.

The cache is managed entirely automatically, and if it is invalid or stale, the program performs initialisation from
scratch. There is no machine-readable way to get information about whether the cache was hit succesfully, but
you can enable logging to see what happens.

46 Chapter 4. C API Reference

Futhark User’s Guide, Release 0.24.3

The lifespan of fname must exceed the lifespan of the configuration object. Pass NULL to disable caching (this
is the default).

4.3 Context

struct futhark_context
An opaque struct representing a Futhark context.

struct futhark_context *futhark_context_new(struct futhark_context_config *cfg)
Create a new context object. You must call futhark_context_free() when you are done with it. It is fine for
multiple contexts to co-exist within the same process, but you must not pass values between them. They have the
same C type, so this is an easy mistake to make.

After you have created a context object, you must immediately call futhark_context_get_error(),
which will return non-NULL if initialisation failed. If initialisation has failed, then you still need to call
futhark_context_free() to release resources used for the context object, but you may not use the context
object for anything else.

void futhark_context_free(struct futhark_context *ctx)
Free the context object. It must not be used again. You must call futhark_context_sync() before calling
this function to ensure there are no outstanding asynchronous operations still running. The configuration must
be freed separately with futhark_context_config_free().

int futhark_context_sync(struct futhark_context *ctx)
Block until all outstanding operations, including copies, have finished executing. Many API functions are asyn-
chronous on their own.

void futhark_context_pause_profiling(struct futhark_context *ctx)
Temporarily suspend the collection of profiling information. Has no effect if profiling was not enabled in the
configuration.

void futhark_context_unpause_profiling(struct futhark_context *ctx)
Resume the collection of profiling information. Has no effect if profiling was not enabled in the configuration.

char *futhark_context_get_error(struct futhark_context *ctx)
A human-readable string describing the last error. Returns NULL if no error has occurred. It is the caller’s
responsibility to free() the returned string. Any subsequent call to the function returns NULL, until a new error
occurs.

void futhark_context_set_logging_file(struct futhark_context *ctx, FILE *f)
Set the stream used to print diagnostics, debug prints, and logging messages during runtime. This is stderr by
default. Even when this is used to re-route logging messages, fatal errors will still only be printed to stderr.

char *futhark_context_report(struct futhark_context *ctx)
Produce a human-readable C string with debug and profiling information collected during program runtime.
It is the caller’s responsibility to free the returned string. It is likely to only contain interesting informa-
tion if futhark_context_config_set_debugging() or futhark_context_config_set_profiling()
has been called previously. Returns NULL on failure.

int futhark_context_clear_caches(struct futhark_context *ctx)
Release any context-internal caches and buffers that may otherwise use computer resources. This is useful for
freeing up those resources when no Futhark entry points are expected to run for some time. Particularly relevant
when using a GPU backend, due to the relative scarcity of GPU memory.

4.3. Context 47

Futhark User’s Guide, Release 0.24.3

4.4 Values

Primitive types (i32, bool, etc) are mapped directly to their corresponding C type. The f16 type is mapped to
uint16_t, because C does not have a standard half type. This integer contains the bitwise representation of the
f16 value in the IEEE 754 binary16 format.

For each distinct array type of primitives (ignoring sizes), an opaque C struct is defined. Arrays of f16 are presented
as containing uint16_t elements. For types that do not map cleanly to C, including records, sum types, and arrays of
tuples, see Opaque Values.

All array values share a similar API, which is illustrated here for the case of the type []i32. The creation/retrieval
functions are all asynchronous, so make sure to call futhark_context_sync() when appropriate. Memory man-
agement is entirely manual. All values that are created with a new function, or returned from an entry point, must at
some point be freed manually. Values are internally reference counted, so even for entry points that return their input
unchanged, you must still free both the input and the output - this will not result in a double free.

struct futhark_i32_1d
An opaque struct representing a Futhark value of type []i32.

struct futhark_i32_1d *futhark_new_i32_1d(struct futhark_context *ctx, int32_t *data, int64_t dim0)
Asynchronously create a new array based on the given data. The dimensions express the number of elements. The
data is copied into the new value. It is the caller’s responsibility to eventually call futhark_free_i32_1d().
Multi-dimensional arrays are assumed to be in row-major form. Returns NULL on failure.

struct futhark_i32_1d *futhark_new_raw_i32_1d(struct futhark_context *ctx, char *data, int64_t offset, int64_t
dim0)

Create an array based on raw data, as well as an offset into it. This differs little from futhark_i32_1d() when
using the c backend, but when using e.g. the opencl backend, the data parameter will be a cl_mem. It is the
caller’s responsibility to eventually call futhark_free_i32_1d(). The data pointer must remain valid for the
lifetime of the array. Unless you are very careful, this basically means for the lifetime of the context. Returns
NULL on failure.

int futhark_free_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr)
Free the value. In practice, this merely decrements the reference count by one. The value (or at least this
reference) may not be used again after this function returns.

int futhark_values_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr, int32_t *data)
Asynchronously copy data from the value into data, which must be of sufficient size. Multi-dimensional arrays
are written in row-major form.

const int64_t *futhark_shape_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr)
Return a pointer to the shape of the array, with one element per dimension. The lifetime of the shape is the same
as arr, and must not be manually freed. Assuming arr is a valid object, this function cannot fail.

4.4.1 Opaque Values

Each instance of a complex type in an entry point (records, nested tuples, etc) is represented by an opaque C struct
named futhark_opaque_foo. In the general case, foo will be a hash of the internal representation. However, if you
insert an explicit type annotations in the entry point (and the type name contains only characters valid in C identifiers),
that name will be used. Note that arrays contain brackets, which are not valid in identifiers. Defining a type abbreviation
is the best way around this.

The API for opaque values is similar to that of arrays, and the same rules for memory management ap-
ply. You cannot construct them from scratch, but must obtain them via entry points (or deserialisation, see
futhark_restore_opaque_foo()).

48 Chapter 4. C API Reference

Futhark User’s Guide, Release 0.24.3

struct futhark_opaque_foo
An opaque struct representing a Futhark value of type foo.

int futhark_free_opaque_foo(struct futhark_context *ctx, struct futhark_opaque_foo *obj)
Free the value. In practice, this merely decrements the reference count by one. The value (or at least this
reference) may not be used again after this function returns.

int futhark_store_opaque_foo(struct futhark_context *ctx, const struct futhark_opaque_foo *obj, void **p,
size_t *n)

Serialise an opaque value to a byte sequence, which can later be restored with
futhark_restore_opaque_foo(). The byte representation is not otherwise specified, and is not stable
between compiler versions or programs. It is stable under change of compiler backend, but not change of
compiler version, or modification to the source program (although in most cases the format will not change).

The variable pointed to by n will always be set to the number of bytes needed to represent the value. The p
parameter is more complex:

• If p is NULL, the function will write to *n, but not actually serialise the opaque value.

• If *p is NULL, the function will allocate sufficient storage with malloc(), serialise the value, and write the
address of the byte representation to *p. The caller gains ownership of this allocation and is responsible
for freeing it.

• Otherwise, the serialised representation of the value will be stored at *p, which must have room for at least
*n bytes. This is done asynchronously.

Returns 0 on success.

struct futhark_opaque_foo *futhark_restore_opaque_foo(struct futhark_context *ctx, const void *p)
Asynchronously restore a byte sequence previously written with futhark_store_opaque_foo(). Returns
NULL on failure. The byte sequence does not need to have been generated by the same program instance, but
it must have been generated by the same Futhark program, and compiled with the same version of the Futhark
compiler.

4.4.2 Records

A record is an opaque type (see above) that supports additional functions to project individual fields (read their values)
and to construct a value given values for the fields. An opaque type is a record if its definition is a record at the Futhark
level.

The projection and construction functions are equivalent in functionality to writing entry points by hand, and so serve
only to cut down on boilerplate. Important things to be aware of:

1. The objects constructed though these functions have their own lifetime (like any objects returned from an entry
point) and must be manually freed, independently of the records from which they are projected, or the fields they
are constructed from.

2. The objects are however in an aliasing relationship with the fields or original record. This means you must be
careful when passing them to entry points that consume their arguments. As always, you don’t have to worry
about this if you never write entry points that consume their arguments.

The precise functions generated depend on the fields of the record. The following functions assume a record with
Futhark-level type type t = {foo: t1, bar: t2} where t1 and t2 are also opaque types.

int futhark_new_opaque_t(struct futhark_context *ctx, struct futhark_opaque_t **out, const struct
futhark_opaque_t2 *bar, const struct futhark_opaque_t1 *foo);

Construct a record in *out which has the given values for the bar and foo fields. The parameters are the fields
in alphabetic order. Tuple fields are named vX where X is an integer. The resulting record aliases the values

4.4. Values 49

Futhark User’s Guide, Release 0.24.3

provided for bar and foo, but has its own lifetime, and all values must be individually freed when they are no
longer needed.

int futhark_project_opaque_t_bar(struct futhark_context *ctx, struct futhark_opaque_t2 **out, const struct
futhark_opaque_t *obj);

Extract the value of the field bar from the provided record. The resulting value aliases the record, but has its
own lifetime, and must eventually be freed.

int futhark_project_opaque_t_foo(struct futhark_context *ctx, struct futhark_opaque_t1 **out, const struct
futhark_opaque_t *obj);

Extract the value of the field bar from the provided record. The resulting value aliases the record, but has its
own lifetime, and must eventually be freed.

4.5 Entry points

Entry points are mapped 1:1 to C functions. Return values are handled with out-parameters.

For example, this Futhark entry point:

entry sum = i32.sum

Results in the following C function:

int futhark_entry_sum(struct futhark_context *ctx, int32_t *out0, const struct futhark_i32_1d *in0)
Asynchronously call the entry point with the given arguments. Make sure to call futhark_context_sync()
before using the value of out0.

Errors are indicated by a nonzero return value. On error, the out-parameters are not touched.

The precise semantics of the return value depends on the backend. For the sequential C backend, errors will always
be available when the entry point returns, and futhark_context_sync() will always return zero. When using a
GPU backend such as cuda or opencl, the entry point may still be running asynchronous operations when it returns,
in which case the entry point may return zero successfully, even though execution has already (or will) fail. These
problems will be reported when futhark_context_sync() is called. Therefore, be careful to check the return code
of both the entry point itself, and futhark_context_sync().

For the rules on entry points that consume their input, see Consumption and Aliasing. Note that even if a value has
been consumed, you must still manually free it. This is the only operation that is permitted on a consumed value.

4.6 GPU

The following API functions are available when using the opencl or cuda backends.

void futhark_context_config_set_device(struct futhark_context_config *cfg, const char *s)
Use the first device whose name contains the given string. The special string #k, where k is an
integer, can be used to pick the k-th device, numbered from zero. If used in conjunction with
futhark_context_config_set_platform(), only the devices from matching platforms are considered.

50 Chapter 4. C API Reference

Futhark User’s Guide, Release 0.24.3

4.6.1 Exotic

The following functions are not interesting to most users.

void futhark_context_config_set_default_group_size(struct futhark_context_config *cfg, int size)
Set the default number of work-items in a work-group.

void futhark_context_config_set_default_num_groups(struct futhark_context_config *cfg, int num)

Set the default number of work-groups used for kernels.

void futhark_context_config_set_default_tile_size(struct futhark_context_config *cfg, int num)

Set the default tile size used when executing kernels that have been block tiled.

void futhark_context_config_dump_program_to(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), dump the OpenCL or CUDA program source to the given file.

void futhark_context_config_load_program_from(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), read OpenCL or CUDA program source from the given file instead of using
the embedded program.

4.7 OpenCL

The following API functions are available only when using the opencl backend.

void futhark_context_config_set_platform(struct futhark_context_config *cfg, const char *s)
Use the first OpenCL platform whose name contains the given string. The special string #k, where k is an integer,
can be used to pick the k-th platform, numbered from zero.

void futhark_context_config_select_device_interactively(struct futhark_context_config *cfg)
Immediately conduct an interactive dialogue on standard output to select the platform and device from a list.

void futhark_context_config_set_command_queue(struct futhark_context_config *cfg, cl_command_queue
queue)

Use exactly this command queue for the context. If this is set, all other device/platform configuration options are
ignored. Once the context is active, the command queue belongs to Futhark and must not be used by anything
else. This is useful for implementing custom device selection logic in application code.

cl_command_queue futhark_context_get_command_queue(struct futhark_context *ctx)
Retrieve the command queue used by the Futhark context. Be very careful with it - enqueueing your own work
is unlikely to go well.

4.7.1 Exotic

The following functions are used for debugging generated code or advanced usage.

void futhark_context_config_add_build_option(struct futhark_context_config *cfg, const char *opt)
Add a build option to the OpenCL kernel compiler. See the OpenCL specification for clBuildProgram for avail-
able options.

void futhark_context_config_dump_binary_to(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), dump the compiled OpenCL binary to the given file.

void futhark_context_config_load_binary_from(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), read a compiled OpenCL binary from the given file instead of using the
embedded program.

4.7. OpenCL 51

Futhark User’s Guide, Release 0.24.3

4.8 CUDA

The following API functions are available when using the cuda backend.

4.8.1 Exotic

The following functions are used for debugging generated code or advanced usage.

void futhark_context_config_add_nvrtc_option(struct futhark_context_config *cfg, const char *opt)
Add a build option to the NVRTC compiler. See the CUDA documentation for nvrtcCompileProgram for
available options.

void futhark_context_config_dump_ptx_to(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), dump the generated PTX code to the given file.

void futhark_context_config_load_ptx_from(struct futhark_context_config *cfg, const char *path)
During futhark_context_new(), read PTX code from the given file instead of using the embedded program.

4.9 Multicore

The following API functions are available when using the multicore backend.

void futhark_context_config_set_num_threads(struct futhark_context_config *cfg, int n)
The number of threads used to run parallel operations. If set to a value less than 1, then the runtime system will
use one thread per detected core.

4.10 General guarantees

Calling an entry point, or interacting with Futhark values through the functions listed above, has no system-wide side
effects, such as writing to the file system, launching processes, or performing network connections. Defects in the
program or Futhark compiler itself can with high probability result only in the consumption of CPU or GPU resources,
or a process crash.

Using the #[unsafe] attribute with in-place updates can result in writes to arbitrary memory locations. A malicious
program can likely exploit this to obtain arbitrary code execution, just as with any insecure C program. If you must run
untrusted code, consider using the --safe command line option to instruct the compiler to disable #[unsafe].

Initialising a Futhark context likewise has no side effects, except if explicitly configured differently, such as by us-
ing futhark_context_config_dump_program_to(). In its default configuration, Futhark will not access the file
system.

Note that for the GPU backends, the underlying API (such as CUDA or OpenCL) may perform file system operations
during startup, and perhaps for caching GPU kernels in some cases. This is beyond Futhark’s control.

Violation the restrictions of consumption (see Consumption and Aliasing) can result in undefined behaviour. This does
not matter for programs whose entry points do not have unique parameter types (In-place Updates).

52 Chapter 4. C API Reference

Futhark User’s Guide, Release 0.24.3

4.11 Manifest

The C backends generate a machine-readable manifest in JSON format that describes the API of the compiled Futhark
program. Specifically, the manifest contains:

• A mapping from the name of each entry point to:

– The C function name of the entry point.

– A list of all inputs, including their type (as a name) and whether they are unique (consuming).

– A list of all outputs, including their type (as a name) and whether they are unique.

– A list of all tuning parameters that can influence the execution of this entry point. These are not necessarily
unique to the entry point.

• A mapping from the name of each non-scalar type to:

– The C type used to represent this type (which is in practice always a pointer of some kind).

– What kind of type this is - either an array or an opaque.

– For arrays, the element type and rank.

– A mapping from operations to the names of the C functions that implement the operations for the type.
The types of the C functions are as documented above. The following operations are listed:

∗ For arrays: free, shape, values, new.

∗ For opaques: free, store, restore.

– For opaques that are actually records (including tuples):

∗ The list of fields, including their type and a projection function. The field ordering here is the one used
expected by the new function.

∗ The name of the C new function for creating a record from field values.

Manifests are defined by the following JSON Schema:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://futhark-lang.org/manifest.schema.json",
"title": "Futhark C Manifest",
"description": "The C API presented by a compiled Futhark program",
"type": "object",
"properties": {

"backend": {"type": "string"},
"version": {"type": "string"},
"entry_points": {

"type": "object",
"additionalProperties": {

"type": "object",
"properties": {

"cfun": {"type": "string"},
"tuning_params": {

"type": "array",
"items": {

"type": "string"
}

},
(continues on next page)

4.11. Manifest 53

Futhark User’s Guide, Release 0.24.3

(continued from previous page)

"outputs": {
"type": "array",
"items": {

"type": "object",
"properties": {

"type": {"type": "string"},
"unique": {"type": "boolean"}

},
"additionalProperties": false

}
},
"inputs": {

"type": "array",
"items": {

"type": "object",
"properties": {

"name": {"type": "string"},
"type": {"type": "string"},
"unique": {"type": "boolean"}

},
"additionalProperties": false

}
}

}
}

},
"types": {

"type": "object",
"additionalProperties": {

"oneOf": [
{ "type": "object",
"properties": {

"kind": {"const": "opaque"},
"ctype": {"type": "string"},
"ops": {

"type": "object",
"properties": {

"free": {"type": "string"},
"store": {"type": "string"},
"restore": {"type": "string"}

},
"additionalProperties": false

},
"record": {

"type": "object",
"properties": {

"new": {"type": "string"},
"fields": {

"type": "array",
"items": {

"type": "object",
"properties": {

(continues on next page)

54 Chapter 4. C API Reference

Futhark User’s Guide, Release 0.24.3

(continued from previous page)

"name": {"type": "string"},
"type": {"type": "string"},
"project": {"type": "string"}

}
}

}
},
"additionalProperties": false

}
},
"required": ["kind", "ctype", "ops"]

},
{ "type": "object",
"properties": {

"kind": {"const": "array"},
"ctype": {"type": "string"},
"rank": {"type": "integer"},
"elemtype": {

"enum":
["i8", "i16", "i32", "i64",
"u8", "u16", "u32", "u64",
"f16", "f32", "f64",
"bool"]

},
"ops": {

"type": "object",
"properties": {

"free": {"type": "string"},
"shape": {"type": "string"},
"values": {"type": "string"},
"new": {"type": "string"}

},
"additionalProperties": false

}
}

}]
}

}
},
"required": ["backend", "entry_points", "types"],
"additionalProperties": false

}

It is likely that we will add more fields in the future, but it is unlikely that we will remove any.

4.11. Manifest 55

Futhark User’s Guide, Release 0.24.3

56 Chapter 4. C API Reference

CHAPTER

FIVE

JAVASCRIPT API REFERENCE

The futhark-wasm and futhark-wasm-multicore compilers produce JavaScript wrapper code to allow JavaScript pro-
grams to invoke the generated WebAssembly code. This chapter describes the API exposed by the wrapper.

First a warning: the JavaScript API is experimental. It may change incompatibly even in minor versions of the
compiler.

A Futhark program futlib.fut compiled with a WASM backend as a library with the --library command line
option produces four files:

• futlib.c, futlib.h: Implementation and header C files generated by the compiler, similar to futhark c.
You can delete these - they are not needed at run-time.

• futlib.class.js: An intermediate build artifact. Feel free to delete it.

• futlib.wasm: A compiled WebAssembly module, which must be
present at runtime.

• futlib.mjs: An ES6 module that can can be imported by other JavaScript code, and implements the API given
in the following.

The module exports a function, newFutharkContext, which is a factory function that returns a Promise producing a
FutharkContext instance (see below). A simple usage example:

import { newFutharkContext } from './futlib.mjs';
var fc;
newFutharkContext().then(x => fc = x);

5.1 General concerns

Memory management is completely manual, as JavaScript does not support finalizers that could let Futhark hook into
the garbage collector. You are responsible for eventually freeing all objects produced by the API, using the appropriate
methods.

57

Futhark User’s Guide, Release 0.24.3

5.2 FutharkContext

FutharkContext is a class that contains information about the context and configuration from the C API. It has methods
for invoking the Futhark entry points and creating FutharkArrays on the WebAssembly heap.

newFutharkContext()

Asynchronously create a new FutharkContext object.

class FutharkContext()

A bookkeeping class representing an instance of a Futhark program. Do not directly invoke its constructor -
always use the newFutharkContext() factory function.

FutharkContext.free()

Frees all memory created by the FutharkContext object. Should be called when the FutharkContext is done
being used. It is an error use a FutharkArray or FutharkOpaque after the FutharkContext on which they
were defined has been freed.

5.3 Values

Numeric types u8, u16, u32, i8, i16, i32, f32, and f64 are mapped to JavaScript’s standard number type. 64-bit
integers u64, and i64 are mapped to BigInt. bool is mapped to JavaScript’s boolean type. Arrays are represented
by the FutharkArray. complex types (records, nested tuples, etc) are represented by the FutharkOpaque class.

5.4 FutharkArray

FutharkArray has the following API

FutharkArray.toArray()

Returns a nested JavaScript array

FutharkArray.toTypedArray()

Returns a flat typed array of the underlying data.

FutharkArray.shape()

Returns the shape of the FutharkArray as an array of BigInts.

FutharkArray.free()

Frees the memory used by the FutharkArray class

FutharkContext also contains two functions for creating FutharkArrays from JavaScript arrays, and typed arrays
for each array type that appears in an entry point. All array types share similar API methods on the FutharkContext,
which is illustrated here for the case of the type []i32.

FutharkContext.new_i32_1d_from_jsarray(jsarray)
Creates and returns a one-dimensional i32 FutharkArray representing the JavaScript array jsarray

FutharkContext.new_i32_1d(array, dim1)
Creates and returns a one-dimensional i32 FutharkArray representing the typed array of array, with the size
given by dim1.

58 Chapter 5. JavaScript API Reference

Futhark User’s Guide, Release 0.24.3

5.5 FutharkOpaque

Complex types (records, nested tuples, etc) are represented by FutharkOpaque. It has no use outside of being accepted
and returned by entry point functions. For this reason the method only has one function for freeing the memory when
FutharkOpaque is no longer used.

FutharkOpaque.free()

Frees memory used by FutharkOpaque. Should be called when Futhark Opaque is no longer used.

5.6 Entry Points

Each entry point in the compiled futhark program has an entry point method on the FutharkContext

FutharkContext.<entry_point_name>(in1, ..., inN)

The entry point function taking the N arguments of the Futhark entry point function, and returns the result. If
the result is a tuple the return value is an array.

5.5. FutharkOpaque 59

Futhark User’s Guide, Release 0.24.3

60 Chapter 5. JavaScript API Reference

CHAPTER

SIX

PACKAGE MANAGEMENT

This document describes futhark pkg, a minimalistic package manager inspired by vgo. A Futhark package is a
downloadable collection of .fut files and little more. There is a (not necessarily comprehensive) list of known pack-
ages.

6.1 Basic Concepts

A package is uniquely identified with a package path, which is similar to a URL, except without a protocol. At the
moment, package paths must be something that can be passed to git clone. In particular, this includes paths to
repositories on major code hosting sites such as GitLab and GitHub. In the future, this will become more flexible. As
an example, a package path may be github.com/athas/fut-foo.

Packages are versioned with semantic version numbers of the form X.Y.Z. Whenever versions are indicated, all three
digits must always be given (that is, 1.0 is not a valid shorthand for 1.0.0).

Most futhark pkg operations involve reading and writing a package manifest, which is always stored in a file called
futhark.pkg. The futhark.pkg file is human-editable, but is in day-to-day use mainly modified by futhark pkg
automatically.

6.2 Using Packages

Required packages can be added by using futhark pkg add, for example:

$ futhark pkg add github.com/athas/fut-foo 0.1.0

This will create a new file futhark.pkg with the following contents:

require {
github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733

}

This lists one required package, with its package path, minimum version (see Version Selection), and the expected
commit hash. The latter is used for verification, to ensure that the contents of a package version cannot be changed
silently.

futhark pkg will perform network requests to determine whether a package of the given name and with the given
version exists and fail otherwise (but it will not check whether the package is otherwise well-formed). The version
number can be elided, in which case futhark pkg will use the newest available version. If the package is already
present in futhark.pkg, it will simply have its version requirement changed to the one specified in the command.
Any dependencies of the package will not be added to futhark.pkg, but will still be downloaded by futhark pkg
sync (see below).

61

https://research.swtch.com/vgo
https://futhark-lang.org/pkgs
https://futhark-lang.org/pkgs
https://semver.org/

Futhark User’s Guide, Release 0.24.3

Adding a package with futhark pkg add modifies futhark.pkg, but does not download the package files. This is
done with futhark pkg sync (without further options). The contents of each required dependency and any transitive
dependencies will be stored in a subdirectory of lib/ corresponding to their package path. As an example:

$ futhark pkg sync
$ tree lib
lib

github.com
athas

fut-foo
foo.fut

3 directories, 1 file

Warning: futhark pkg sync will remove any unrecognized files or local modifications to files in lib/ (except of
course the package directory of the package path listed in futhark.pkg; see Creating Packages).

Packages can be removed from futhark.pkg with:

$ futhark pkg remove pkgpath

You will need to run futhark pkg sync to actually remove the files in lib/.

The intended usage is that futhark.pkg is added to version control, but lib/ is not, as the contents of lib/ can
always be reproduced from futhark.pkg. However, adding lib/ works just fine as well.

6.2.1 Importing Files from Dependencies

futhark pkg sync will populate the lib/ directory, but does not interact with the compiler in any way. The down-
loaded files can be imported using the usual import mechanism (Referencing Other Files); for example, assuming the
package contains a file foo.fut:

import "lib/github.com/athas/fut-foo/foo"

Ultimately, everything boils down to ordinary file system semantics. This has the downside of relatively long and
clumsy import paths, but the upside of predictability.

6.2.2 Upgrading Dependencies

The futhark pkg upgrade command will update every version requirement in futhark.pkg to be the most recent
available version. You still need to run futhark pkg sync to actually retrieve the new versions. Be careful - while
upgrades are safe if semantic versioning is followed correctly, this is not yet properly machine-checked, so human
mistakes may occur.

As an example:

$ cat futhark.pkg
require {
github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733

}
$ futhark pkg upgrade
Upgraded github.com/athas/fut-foo 0.1.0 => 0.2.1.
$ cat futhark.pkg
require {

(continues on next page)

62 Chapter 6. Package Management

Futhark User’s Guide, Release 0.24.3

(continued from previous page)

github.com/athas/fut-foo 0.2.1 #3ddc9fc93c1d8ce560a3961e55547e5c78bd0f3e
}
$ futhark pkg sync
$ tree lib
lib

github.com
athas

fut-bar
bar.fut

fut-foo
foo.fut

4 directories, 2 files

Note that fut-foo 0.2.1 depends on github.com/athas/fut-bar, so it was fetched by futhark pkg sync.

futhark pkg upgrade will never upgrade across a major version number. Due to the principle of Semantic Import
Versioning, a new major version is a completely different package from the point of view of the package manager. Thus,
to upgrade to a new major version, you will need to use futhark pkg add to add the new version and futhark pkg
remove to remove the old version. Or you can keep it around - it is perfectly acceptable to depend on multiple major
versions of the same package, because they are really different packages.

6.3 Creating Packages

A package is a directory tree (which at the moment must correspond to a Git repository). It must contain two things:

• A file futhark.pkg at the root defining the package path and any required packages.

• A package directory lib/pkg-path, where pkg-path is the full package path.

The contents of the package directory is what will be made available to users of the package. The repository may
contain other things (tests, data files, examples, docs, other programs, etc), but these are ignored by futhark pkg.
This structure can be created automatically by running for example:

$ futhark pkg init github.com/sturluson/edda

Note again, no https://. The result is this futhark.pkg:

package github.com/sturluson/edda

require {
}

And this file hierarchy:

$ tree lib
lib

github.com
sturluson

edda

3 directories, 0 files

6.3. Creating Packages 63

https://research.swtch.com/vgo-import
https://research.swtch.com/vgo-import

Futhark User’s Guide, Release 0.24.3

Note that futhark pkg init is not necessary simply to use packages, only when creating packages.

When creating a package, the .fut files we are writing will be located inside the lib/ directory. If the package has
its own dependencies, whose files we would like to access, we can use relative imports. For example, assume we
are creating a package github.com/sturluson/edda and we are writing a Futhark file located at lib/github.
com/sturluson/edda/saga.fut. Further, we have a dependency on the package github.com/athas/foo-fut,
which is stored in the directory lib/github.com/athas/foo-fut. We can import a file lib/github.com/athas/
foo-fut/foo.fut from lib/github.com/sturluson/edda/saga.fut with:

import "../foo-fut/foo"

6.3.1 Releasing a Package

Currently, a package corresponds exactly to a GitHub repository mirroring the package path. A release is done by
tagging an appropriate commit with git tag vX.Y.Z and then pushing the tag to GitHub with git push --tags.
In the future, this will be generalised to other code hosting sites and version control systems (and possibly self-hosted
tarballs). Remember to take semantic versioning into account - unless you bump the major version number (or the
major version is 0), the new version must be fully compatible with the old.

When releasing a new package, consider getting it added to the central package list. See this page for details.

6.3.2 Incrementing the Major Version Number

While backwards-incompatible modifications to a package are sometimes unavoidable, it is wise to avoid them as
much as possible, as they significantly inconvenience users. To discourage breaking compatibility, futhark pkg tries
to ensure that the package developer feels this inconvenience as well. In many cases, an incompatible change can be
avoided simply by adding new files to the package rather than incompatibly changing the existing ones.

In the general case, the package path also encodes the major version of the package, separated with a @. For example,
version 5.2.1 of a package might have the package path github.com/user/repo@5. For major versions 0 and 1, this
can be elided. This means that multiple (major) versions of a package are completely distinct from the point of view
of the package manager - this principle is called Semantic Import Versioning, and is intended to facilitate backwards
compatibility of packages when new versions are released.

If you really must increment the major version, then you will need to change the package path in futhark.pkg to
contain the new major version preceded by @. For example, lib/github.com/sturluson/edda becomes lib/
github.com/sturluson/edda@2. As a special case, this is not necessary when moving from major version 0 to 1.
Since the package path has changed, you will also need to rename the package directory in lib/. This is painful and
awkward, but it is less painful and awkward than what users feel when their dependencies break compatibility.

6.3.3 Renaming a Package

It is likely that the hosting location for a very long-lived package will change from time to time. Since the hosting
location is embedded into the package path itself, this causes some issues for futhark pkg.

In simple cases, there is no problem. Consider a package github.com/asgard/loki which is moved to github.
com/utgard/loki. If no GitHub-level redirect is set up, all users must update the path by which they import the
package. This is unavoidable, unfortunately.

However, the old tagged versions, which contain a futhark.pkg that uses the old package path, will continue to work.
This is because the package path indicated in package.pkgmerely defines the subdirectory of lib/where the package
files are to be found, while the package path used by dependents in the require section defines where the package files
are located after futhark pkg sync. Thus, when we import an old version of github.com/utgard/loki whose

64 Chapter 6. Package Management

https://futhark-lang.org/pkgs
https://github.com/diku-dk/futhark-docbot/blob/master/README.md
https://research.swtch.com/vgo-import

Futhark User’s Guide, Release 0.24.3

futhark.pkg defines the package as github.com/asgard/loki, the package files will be retrieved from the lib/
github.com/asgard/loki directory in the repository, but stored at lib/github.com/utgard/loki in the local
directory.

The above means that package management remains operational in simple cases of renaming, but it is awkward when a
transitive dependency is renamed (or deleted). The Futhark package ecosystem is sufficiently embryonic that we have
not yet developed more robust solutions. When such solutions are developed, they will likely involve some form of
replace directive that allows transparent local renaming of packages, as well as perhaps a central registry of package
paths that does not depend on specific source code hosts.

6.4 Version Selection

The package manifest futhark.pkg declares which packages the program depends on. Dependencies are specified
as the oldest acceptable version within the given major version. Upper version bounds are not supported, as strict
adherence to semantic versioning is assumed, so any later version with the same major version number should work.
When futhark pkg sync calculates which version of a given package to download, it will pick the oldest version
that still satisfies the minimum version requirements of that package in all transitive dependencies. This means that a
version may be used that is newer than the one indicated in futhark.pkg, but only if a dependency requires a more
recent version.

6.5 Tests and Documentation for Dependencies

Package management has been designed to ensure that the normal development tools work as expected with the contents
of the lib/ directory. For example, to ensure that all dependencies do in fact work well (or at least compile) together,
run:

futhark test lib

Also, you can generate hyperlinked documentation for all dependencies with:

futhark doc lib -o docs

The file docs/index.html can be opened in a web browser to browse the documentation. Prebuilt documentation is
also available via the online package list.

6.6 Safety

In contrast to some other package managers, futhark pkg does not run any package-supplied code on installation,
upgrade, or removal. This means that all futhark pkg operations are in principle completely safe (barring exploitable
bugs in futhark pkg itself, which is unlikely but not impossible). Further, Futhark code itself is also completely pure,
so executing it cannot have any unfortunate effects, such as infecting all of your own packages with a worm. The worst
it can do is loop infinitely, consume arbitrarily large amounts of memory, or produce wrong results.

The exception is packages that uses unsafe. With some cleverness, unsafe can be combined with in-place updates
to perform arbitrary memory reads and writes, which can trivially lead to exploitable behaviour. You should not use
untrusted code that employs unsafe (but the --safe compiler option may help). However, this is not any worse than
calling external code in a conventional impure language, which generally can perform any conceivable harmful action.

6.4. Version Selection 65

https://futhark-lang.org/pkgs
https://jamie.build/how-to-build-an-npm-worm

Futhark User’s Guide, Release 0.24.3

6.7 Private repositories

The Futhark package manager is intentionally very simple - perhaps even simplistic. The key philosophy is that if
you can git clone a repository from the command line, then futhark pkg can also access it. However, futhark
pkg always uses the https:// protocol when converting package paths to the URLs that are passed to git, which is
sometimes inconvenient for self-hosted or private repositories. As a workaround, you can modify your Git configuration
file to transparently replace https:// with ssh:// for certain repositories. For example, you can add the following
entry $HOME/.gitconfig:

[url "ssh://git@github.com/sturluson"]
insteadOf = https://github.com/sturluson

This will make all interactions with repositories owned by the sturluson user on GitHub use SSH instead of HTTPS.

66 Chapter 6. Package Management

CHAPTER

SEVEN

WRITING FAST FUTHARK PROGRAMS

This document contains tips, tricks, and hints for writing efficient Futhark code. Ideally you’d need to know nothing
more than an abstract cost model, but sometimes it is useful to have an idea of how the compiler will transform your
program, what values look like in memory, and what kind of code the compiler will generate for you. These details
are documented below. Don’t be discouraged by the complexities mentioned here - most Futhark programs are written
without worrying about any of these details, and they still manage to run with good performance. This document
focuses on corner cases and pitfalls, which easily makes for depressing reading.

7.1 Parallelism

The Futhark compiler only generates parallel code for explicitly parallel constructs such as map and reduce. A plain
loop will not result in parallel code (unless the loop body itself contains parallel operations). The most important
parallel constructs are the second-order array combinators (SOACs) such as map and reduce, but functions such as
copy are also parallel.

When describing the asymptotic cost of a Futhark function, it is not enough to give a traditional big-O measure of the
total amount of work. Both foldl and reduce involve O(n) work, where n is the size of the input array, but foldl
is sequential while reduce is parallel, and this is an important distinction. To make this distinction, each function is
described by two costs: the work, which is the total amount of operations, and the span (sometimes called depth) which
is intuitively the “longest chain of sequential dependencies”. We say that foldl has span O(n), while reduce has span
O(log(n)). This explains that reduce is more parallel than foldl. The documentation for a Futhark function should
mention both its work and span. See this for more details on parallel cost models and pointers to literature.

7.1.1 Scans and reductions

The scan and reduce SOACs are rather inefficient when their operators are on arrays. If possible, use tuples instead
(see Small Arrays). The one exception is when the operator is a map2 or equivalent. Example:

reduce (map2 (+)) (replicate n 0) xss

Such “vectorised” operators are typically handled quite efficiently. Although to be on the safe side, you can rewrite the
above by interchanging the reduce and map:

map (reduce (+) 0) (transpose xss)

Avoid reductions over tiny arrays, e.g. reduce (+) 0 [x,y,z]. In such cases the compiler will generate complex
code to exploit a negligible amount of parallelism. Instead, just unroll the loop manually (x+y+z) or perhaps use foldl
(+) 0 [x,z,y], which produces a sequential loop.

67

https://sigkill.dk/writings/par/cost.html

Futhark User’s Guide, Release 0.24.3

7.1.2 Histograms

The reduce_by_index construct (“generalised histogram”) has a clever and adaptive implementation that handles
multiple updates of the same bin efficiently. Its main weakness is when computing a very large histogram (many
millions of bins) where only a tiny fraction of the bins are updated. This is because the main mechanism for optimising
conflicts is by duplicating the histogram in memory, but this is not efficient when it is very large. If you know your
program involves such a situation, it may be better to implement the histogram operation by sorting and then performing
an irregular segmented reduction.

Particularly with the GPU backends, reduce_by_index is much faster when the operator involves a single 32-bit or
64-bit value. Even if you really want an 8-bit or 16-bit result, it may be faster to compute it with a 32-bit or 64-bit type
and manually mask off the excess bits.

7.1.3 Nested parallelism

Futhark allows nested parallelism, understood as a parallel construct used inside some other parallel construct. The
simplest example is nested SOACs. Example:

map (\xs -> reduce (+) 0 xs) xss

Nested parallelism is allowed and encouraged, but its compilation to efficient code is rather complicated, depending on
the compiler backend that is used. The problem is that sometimes exploiting all levels of parallelism is not optimal, yet
how much to exploit depends on run-time information that is not available to the compiler.

Sequential backends

The sequential backends are straightforward: all parallel operations are compiled into sequential loops. Due to
Futhark’s low-overhead data representation (see below), this is often surprisingly efficient.

Multicore backend

Whenever the multicore backend encounters nested parallelism, it generates two code versions: one where the nested
parallel constructs are also parallelised (possibly recursively involving further nested parallelism), and one where they
are turned into sequential loops. At runtime, based on the amount of work available and self-tuning heuristics, the
scheduler picks the version that it believes best balances overhead with exploitation of parallelism.

GPU backends

The GPU backends handle parallelism through an elaborate program transformation called incremental flattening. The
full details are beyond the scope of this document, but some properties are useful to know of. See this paper for more
details.

The main restriction is that the GPU backends can only handle regular nested parallelism, meaning that the sizes of
inner parallel dimensions are invariant to the outer parallel dimensions. For example, this expression contains irregular
nested parallelism:

map (\i -> reduce (+) 0 (iota i)) is

This is because the size of the nested parallel construct is i, and i has a different value for every iteration of the
outer map. The Futhark compiler will currently turn the irregular constructs (here, the reduce) into a sequential loop.
Depending on how complicated the irregularity is, it may even refuse to generate code entirely.

68 Chapter 7. Writing Fast Futhark Programs

https://futhark-lang.org/publications/ppopp19.pdf

Futhark User’s Guide, Release 0.24.3

Incremental flattening is based on generating multiple code versions to cater to different classes of datasets. At run-
time, one of these versions will be picked for execution by comparing properties of the input (its size) with a threshold
parameter. These threshold parameters have sensible defaults, but for optimal performance, they can be tuned with
futhark-autotune.

7.2 Value Representation

The compiler discards all type abstraction when compiling. Using the module system to make a type abstract causes
no run-time overhead.

7.2.1 Scalars

Scalar values (i32, f64, bool, etc) are represented as themselves. The internal representation does not distinguish
signs, so i32 and u32 have the same representation, and converting between types that differ only in sign is free.

7.2.2 Tuples

Tuples are flattened and then represented directly by their individual components - there are no tuple objects at runtime.
A function that takes an argument of type (f64,f64) corresponds to a C function that takes two arguments of type
double. This has one performance implication: whenever you pass a tuple to a function, the entire tuple is copied
(except any embedded arrays, which are always passed by reference, see below). Due to the compiler’s heavy use of
inlining, this is rarely a problem in practice, but it can be a concern when using the loop construct with a large tuple
as the loop variant parameter.

7.2.3 Records

Records are turned into tuples by simply sorting their fields and discarding the labels. This means there is no overhead
to using a record compared to using a tuple.

7.2.4 Sum Types

A sum type value is represented as a tuple containing all the payload components in order, prefixed with an i8 tag to
identify the constructor. For example,

#foo i32 bool | #bar i32

would be represented as a tuple of type

(i8, i32, bool, i32)

where the value

#foo 42 false

is represented as

(1, 42, false, 0)

7.2. Value Representation 69

Futhark User’s Guide, Release 0.24.3

where #foo is assigned the tag 1 because it is alphabetically after #bar.

To shrink the tuples, if multiple constructors have payload elements of the same type, the compiler assigns them to the
same elements in the result tuple. The representation of the above sum type is actually the following:

(i8, i32, bool)

The types must be the same for deduplication to take place - despite i32 and f32 being of the same size, they cannot be
assigned the same tuple element. This means that the type

#foo [n]i32 | #bar [n]i32

is efficiently represented as

(u8, [n]i32)

However the type

#foo [n]i32 | #bar [n]f32

is represented as

(u8, [n]i32, [n]f32)

which is not great. Take caution when you use sum types with large arrays in their payloads.

7.2.5 Functions

Higher-order functions are implemented via defunctionalisation. At run-time, they are represented by a record contain-
ing their lexical closure. Since the type system forbids putting functions in arrays, this is essentially a constant cost,
and not worth worrying about.

7.2.6 Arrays

Arrays are the only Futhark values that are boxed - that is, are stored on the heap.

The elements of an array are unboxed, stored adjacent to each other in memory. There is zero memory overhead except
for the minuscule amount needed to track the shape of the array.

Multidimensional arrays

At the surface language level, Futhark may appear to support “arrays of arrays”, and this is indeed a convenient aspect
of its programming model, but at runtime multi-dimensional arrays are stored in flattened form. A value of type
[x][y]i32 is laid out in memory simply as one array containing x*y integers. This means that constructing an array
[x,y,x] can be (relatively) expensive if x, y, z are themselves large arrays, as they must be copied in their entirety.

Since arrays cannot contain other arrays, memory management only has to be concerned with one level of indirection.
In practice, it means that Futhark can use straightforward reference counting to keep track of when to free the memory
backing an array, as circular references are not possible. Further, since arrays tend to be large and relatively few in
number, the usual performance impact of naive reference counting is not present.

70 Chapter 7. Writing Fast Futhark Programs

Futhark User’s Guide, Release 0.24.3

Arrays of tuples

For arrays of tuples, Futhark uses the so-called structure of arrays representation. In Futhark terms, an array [n](a,b,
c) is at runtime represented as the tuple ([n]a,[n]b,[n]c). This means that the final memory representation always
consists of arrays of scalars.

This has some significant implications. For example, zip and unzip are very cheap, as the actual runtime representa-
tion is in always “unzipped”, so these functions don’t actually have to do anything.

Since records and sum types are represented as tuples, this also explains how arrays of these are represented.

Element order

The exact in-memory element ordering is up to the compiler, and depends on how the array is constructed and how
it is used. Absent any other information, Futhark represents multidimensional arrays in row-major order. However,
depending on how the array is traversed, the compiler may insert code to represent it in some other order. For particularly
tricky programs, an array may even be duplicated in memory, represented in different ways, to ensure efficient traversal.
This means you should normally not worry about how to represent your arrays to ensure coalesced access on GPUs or
similar. That is the compiler’s job.

7.3 Crucial Optimisations

Some of the optimisations done by the Futhark compiler are important, complex, or subtle enough that it may be useful
to know how they work, and how to write code that caters to their quirks.

7.3.1 Fusion

Futhark performs fusion of SOACs. For an expression map f (map g A), then the compiler will optimise this into a
single map with the composition of f and g, which prevents us from storing an intermediate array in memory. This is
called vertical fusion or producer-consumer fusion. In this case the producer is map g and the consumer is map f.

Fusion does not depend on the expressions being adjacent as in this example, as the optimisation is performed on a
data dependency graph representing the program. This means that you can decompose your programs into many small
parallel operations without worrying about the overhead, as the compiler will fuse them together automatically.

Not all producer-consumer relationships between SOACs can be fused. Generally, map can always be fused as a pro-
ducer, but scan, reduce, and similar SOACs can only act as consumers.

Horizontal fusion occurs when two SOACs take as input the same array, but are not themselves in a producer-consumer
relationship. Example:

(map f xs, map g xs)

Such cases are fused into a single operation that traverses xs just once. More than two SOACs can be involved in
horizontal fusion, and they need not be of the same kind (e.g. one could be a map and the other a reduce).

7.3. Crucial Optimisations 71

https://en.wikipedia.org/wiki/AoS_and_SoA

Futhark User’s Guide, Release 0.24.3

7.4 Free Operations

Some operations such as array slicing, take, drop, transpose and reverse are “free” in the sense that they merely
return a different view of some underlying array. In most cases they have constant cost, no matter the size of the
array they operate on. This is because they are index space transformations that simply result in different code being
generated when the arrays are eventually used.

However, there are some cases where the compiler is forced to manifest such a “view” as an actual array in memory,
which involves a full copy. An incomplete list follows:

• Any array returned by an entry point is converted to row-major order.

• An array returned by an if branch may be copied if its representation is substantially different from that of the
other branch.

• An array returned by a loop body may be copied if its representation is substantially different from that of the
initial loop values.

• An array is copied whenever it becomes the element of another multidimensional array. This is most obviously
the case for array literals ([x,y,z]), but also for map expressions where the mapped function returns an array.

Note that this notion of “views” is not part of the Futhark type system - it is merely an implementation detail. Strictly
speaking, all functions that return an array (e.g. reverse) should be considered to have a cost proportional to the size
of the array, even if that cost will almost never actually be paid at run-time. If you want to be sure no copy takes place,
it may be better to explicitly maintain tuples of indexes into some other array.

7.5 Small Arrays

The compiler assumes arrays are “large”, which for example means that operations across them are worth parallelising.
It also means they are boxed and heap-allocated, even when the size is a small constant. This can cause unexpectedly
bad performance when using small constant-size arrays (say, five elements or less). Consider using tuples or records
instead. This post contains more information on how and why. If in doubt, try both and measure which is faster.

7.6 Inlining

The compiler currently inlines all functions at their call site, unless they have been marked with the noinline attribute
(see Attributes). This can lead to code explosion, which mostly results in slow compile times, but can also affect run-
time performance. In many cases this is currently unavoidable, but sometimes the program can be rewritten such that
instead of calling the same function in multiple places, it is called in a single place, in a loop. E.g. we might rewrite f
x (f y (f z v)) as:

loop acc = v for a in [z,y,x] do
f a acc

72 Chapter 7. Writing Fast Futhark Programs

https://futhark-lang.org/blog/2019-01-13-giving-programmers-what-they-want.html

CHAPTER

EIGHT

COMPILER ERROR INDEX

Elaboration on type errors produced by the compiler. Many error messages contain links to the sections below.

8.1 Uniqueness errors

8.1.1 “Using x, but this was consumed at y.”

A core principle of uniqueness typing (see In-place Updates) is that after a variable is “consumed”, it must not be used
again. For example, this is invalid, and will result in the error above:

let y = x with [0] = 0
in x

Several operations can consume a variable: array update expressions, calling a function with unique-typed parame-
ters, or passing it as the initial value of a unique-typed loop parameter. When a variable is consumed, its aliases are
also considered consumed. Aliasing is the possibility of two variables occupying the same memory at run-time. For
example, this will fail as above, because y and x are aliased:

let y = x
let z = y with [0] = 0
in x

We can always break aliasing by using a copy expression:

let y = copy x
let z = y with [0] = 0
in x

8.1.2 “Would consume x, which is not consumable”

This error message occurs for programs that try to perform a consumption (such as an in-place update) on variables
that are not consumable. For example, it would occur for the following program:

def f (a: []i32) =
let a[0] = a[0]+1
in a

Only arrays with a a unique array type can be consumed. Such a type is written by prefixing the array type with an
asterisk. The program could be fixed by writing it like this:

73

Futhark User’s Guide, Release 0.24.3

def f (a: *[]i32) =
let a[0] = a[0]+1
in a

Note that this places extra obligations on the caller of the f function, since it now consumes its argument. See In-place
Updates for the full details.

You can always obtain a unique copy of an array by using copy:

def f (a: []i32) =
let a = copy a
let a[0] = a[0]+1
in a

But note that in most cases (although not all), this subverts the purpose of using in-place updates in the first place.

8.1.3 “Unique-typed return value of x is aliased to y, which is not consumable”

This can be caused by a function like this:

def f (xs: []i32) : *[]i32 = xs

We are saying that f returns a unique array - meaning it has no aliases - but at the same time, it aliases the parameter
xs, which is not marked as being unique (see In-place Updates). This violates one of the core guarantees provided by
uniqueness types, namely that a unique return value does not alias any value that might be used in the future. Imagine
if this was permitted, and we had a program that used f:

let b = f a
let b[0] = x
...

The update of b is fine, but if bwas allowed to alias a (hence occupying the same memory), then we would be modifying
a as well, which is a violation of referential transparency.

As with most uniqueness errors, it can be fixed by using copy xs to break the aliasing. We can also change the type
of f to take a unique array as input:

def f (xs: *[]i32) : *[]i32 = xs

This makes xs “consumable”, in the sense used by the error message.

8.1.4 “A unique-typed component of the return value of x is aliased to some other
component”

Caused by programs like the following:

def main (xs: *[]i32) : (*[]i32, *[]i32) = (xs, xs)

While we are allowed to “consume” xs, as it is a unique parameter, this function is trying to return two unique values
that alias each other. This violates one of the core guarantees provided by uniqueness types, namely that a unique return
value does not alias any value that might be used in the future (see In-place Updates) - and in this case, the two values
alias each other. We can fix this by inserting copies to break the aliasing:

74 Chapter 8. Compiler Error Index

Futhark User’s Guide, Release 0.24.3

def main (xs: *[]i32) : (*[]i32, *[]i32) = (xs, copy xs)

8.1.5 “Argument passed for consuming parameter is self-aliased.”

Caused by programs like the following:

def g (t: *([]i64, []i64)) = 0

def f n =
let x = iota n
in g (x,x)

The function g expects to consume two separate []i64 arrays, but f passes it a tuple containing two references to the
same physical array. This is not allowed, as g must be allowed to assume that components of consuming record- or
tuple parameters have no internal aliases. We can fix this by inserting copies to break the aliasing:

def f n =
let x = iota n
in g (copy (x,x))

Alternative, we could duplicate the expression producing the array:

def f n =
g (iota n, iota n))

8.1.6 “Consuming parameter passed non-unique argument”

Caused by programs like the following:

def update (xs: *[]i32) = xs with [0] = 0

def f (ys: []i32) = update ys

The update function consumes its xs argument to perform an in-place update, as denoted by the asterisk before the
type. However, the f function tries to pass an array that it is not allowed to consume (no asterisk before the type).

One solution is to change the type of f so that it also consumes its input, which allows it to pass it on to update:

def f (ys: *[]i32) = update ys

Another solution to copy the array that we pass to update:

def f (ys: []i32) = update (copy ys)

8.1. Uniqueness errors 75

Futhark User’s Guide, Release 0.24.3

8.1.7 “Non-consuming higher-order parameter passed consuming argument.”

This error occurs when we have a higher-order function that expects a function that does not consume its arguments,
and we pass it one that does:

def apply 'a 'b (f: a -> b) (x: a) = f x

def consume (xs: *[]i32) = xs with [0] = 0

def f (arr: *[]i32) = apply consume arr

We can fix this by changing consume so that it does not have to consume its argument, by adding a copy:

def consume (xs: []i32) = copy xs with [0] = 0

Or we can create a variant of apply that accepts a consuming function:

def apply 'a 'b (f: *a -> b) (x: *a) = f x

8.1.8 “Function result aliases the free variable x”

Caused by definitions such as the following:

def x = [1,2,3]

def f () = x

To simplify the tracking of aliases, the Futhark type system requires that the result of a function may only alias the
function parameters, not any free variables. Use copy to fix this:

def f () = copy x

8.1.9 “Parameter x refers to size y which will not be accessible to the caller

This happens when the size of an array parameter depends on a name that cannot be expressed in the function type:

def f (x: i64, y: i64) (A: [x]bool) = true

Intuitively, this function might have the following type:

val f : (x: i64, y: i64) -> [x]bool -> bool

But this is not currently a valid Futhark type. In a function type, each parameter can be named as a whole, but it cannot
be taken apart in a pattern. In this case, we could fix it by splitting the tuple parameter into two separate parameters:

def f (x: i64) (y: i64) (A: [x]bool) = true

This gives the following type:

val f : (x: i64) -> (y: i64) -> [x]bool -> bool

Another workaround is to loosen the static safety, and use a size coercion to give A its expected size:

76 Chapter 8. Compiler Error Index

Futhark User’s Guide, Release 0.24.3

def f (x: i64, y: i64) (A_unsized: []bool) =
let A = A_unsized :> [x]bool
in true

This will produce a function with the following type:

val f [d] : (i64, i64) -> [d]bool -> bool

This does however lose the constraint that the size of the array must match one of the elements of the tuple, which
means the program may fail at run-time.

The error is not always due to an explicit type annotation. It might also be due to size inference:

def f (x: i64, y: i64) (A: []bool) = zip A (iota x)

Here the type rules force A to have size x, leading to a problematic type. It can be fixed using the techniques above.

8.2 Size errors

8.2.1 “Size x unused in pattern.”

Caused by expressions like this:

def [n] (y: i32) = x

And functions like this:

def f [n] (x: i32) = x

Since n is not the size of anything, it cannot be assigned a value at runtime. Hence this program is rejected.

8.2.2 “Causality check”

Causality check errors occur when the program is written in such a way that a size is needed before it is actually
computed. See Causality restriction for the full rules. Contrived example:

def f (b: bool) (xs: []i32) =
let a = [] : [][]i32
let b = [filter (>0) xs]
in a[0] == b[0]

Here the inner size of the array a must be the same as the inner size of b, but the inner size of b depends on a filter
operation that is executed after a is constructed.

There are various ways to fix causality errors. In the above case, we could merely change the order of statements, such
that b is bound first, meaning that the size is available by the time a is bound. In many other cases, we can lift out the
“size-producing” expressions into a separate let-binding preceding the problematic expressions.

8.2. Size errors 77

Futhark User’s Guide, Release 0.24.3

8.2.3 “Unknowable size x in parameter of y”

This error occurs when you define a function that can never be applied, as it requires an input of a specific size, and
that size is not known. Somewhat contrived example:

def f (x: bool) =
let n = if x then 10 else 20
in \(y: [n]bool) -> ...

The above constructs a function that accepts an array of size 10 or 20, based on the value of x argument. But the type of
f true by itself would be ?[n].[n]bool -> bool, where the n is unknown. There is no way to construct an array
of the right size, so the type checker rejects this program. (In a fully dependently typed language, the type would have
been [10]bool -> bool, but Futhark does not do any type-level computation.)

In most cases, this error means you have done something you didn’t actually mean to. However, in the case that that
the above really is what you intend, the workaround is to make the function fully polymorphic, and then perform a size
coercion to the desired size inside the function body itself:

def f (x: bool) =
let n = if x then 10 else 20
in \(y_any: []bool) ->

let y = y_any :> [n]bool
in true

This requires a check at run-time, but it is the only way to accomplish this in Futhark.

8.2.4 “Existential size would appear in function parameter of return type”

This occurs most commonly when we use function composition with one or more functions that return an existential
size. Example:

filter (>0) >-> length

The filter function has this type:

val filter [n] 't : (t -> bool) -> [n]t -> ?[m].[m]t

That is, filter returns an array whose size is not known until the function actually returns. The length function has
this type:

val length [n] 't : [n]t -> i64

Whenever length occurs (as in the composition above), the type checker must instantiate the [n] with the concrete
symbolic size of its input array. But in the composition, that size does not actually exist until filter has been run.
For that matter, the type checker does not know what >-> does, and for all it knows it may actually apply filter many
times to different arrays, yielding different sizes. This makes it impossible to uniquely instantiate the type of length,
and therefore the program is rejected.

The common workaround is to use pipelining instead of composition whenever we use functions with existential return
types:

xs |> filter (>0) |> length

This works because |> is left-associative, and hence the xs |> filter (>0) part will be fully evaluated to a concrete
array before length is reached.

78 Chapter 8. Compiler Error Index

Futhark User’s Guide, Release 0.24.3

We can of course also write it as length (filter (>0) xs), with no use of either pipelining or composition.

8.2.5 “Existential size n not used as array size”

This error occurs for type expressions that use explicit existential quantification in an incorrect way, such as the follow-
ing examples:

?[n].bool

?[n].bool -> [n]bool

When we use existential quantification, we are required to use the size within its scope, and it must not exclusively be
used to the right of function arrow.

To understand the motivation behind this rule, consider that when we use an existential quantifier we are saying that
there is some size, it just cannot be known statically, but must be read from some value (i.e. array) at runtime. In the
first example above, the existential size n is not used at all, so the actual value cannot be determined at runtime. In the
second example, while an array [n]bool does exist, it is part of a function type, and at runtime functions are black
boxes and don’t “carry” the size of their parameter or result types.

The workaround is to actually use the existential size. This can be as simple as adding a witness array of type [n]():

?[n].([n](),bool)

?[n].([n](), bool -> [n]bool)

Such an array will take up no space at runtime.

8.2.6 “Type abbreviation contains an anonymous size not used constructively as
an array size.”

This error occurs for type abbreviations that use anonymous sizes, such as the following:

type^ t = []bool -> bool

Such an abbreviation is actually shorthand for

type^ t = ?[n].[n]bool -> bool

which is erroneous, but with workarounds, as explained in “Existential size n not used as array size”.

8.2.7 “Parameter x used as size would go out of scope.”

This error tends to happen when higher-order functions are used in a way that causes a size requirement to become
impossible to express. Real programs that encounter this issue tend to be complicated, but to illustrate the problem,
consider the following contrived function:

def f (n: i64) (m: i64) (b: [n][m]bool) = b[0,0]

We have the following type:

val f : (n: i64) -> (m: i64) -> (b: [n][m]bool) -> bool

8.2. Size errors 79

Futhark User’s Guide, Release 0.24.3

Now suppose we say:

def g = uncurry f

What should be the type of g? Intuitively, something like this:

val g : (n: i64, m: i64) -> (b: [n][m]bool) -> bool

But this is not expressible in the Futhark type system - and even if it were, it would not be easy to infer this in general,
as it depends on exactly what uncurry does, which the type checker does not know.

As a workaround, we can use explicit type annotation and size coercions to give g an acceptable type:

def g [a][b] (n,m) (b: [a][b]bool) = f n m (b :> [n][m]bool)

Another workaround, which is often the right one in cases not as contrived as above, is to modify f itself to produce a
witness of the constraint, in the form of an array of shape [n][m]:

def f (n: i64) (m: i64) : ([n][m](), [n][m]bool -> bool) =
(replicate n (replicate m ()), \b -> b[0,0])

Then uncurry f works just fine and has the following type:

(i64, i64) -> ?[n][m].([n][m](), [n][m]bool -> bool)

Programming with such explicit size witnesses is a fairly advanced technique, but often necessary when writing ad-
vanced size-dependent code.

8.2.8 “Parameter types x and y are incompatible regarding consuming their argu-
ments

This error occurs when you provide a function that does consume its argument in a context that expects a function that
does not allow a function that consumes its argument.

As a simple example, consider the following contrived function that does consume its argument:

def f (xs: *[]f32) : f32 = 0f32

Now we define another function that is merely f, but with a type annotation that tries to hide the consumption:

def g : []f32 -> f32 = f

Allowing this would permit us to hide the fact that f consumes its argument, which would not be sound, so the type
checker complains.

8.2.9 “Ambiguous size x”

There are various sources for this error, but they all have the same ultimate cause: the type checker cannot figure out
how some symbolic size name should be resolved to a concrete size. The simplest example, although contrived, is
probably this:

let [n][m] (xss: [n][m]i64) = []

80 Chapter 8. Compiler Error Index

Futhark User’s Guide, Release 0.24.3

The type checker can infer that n should be zero, but how can it possibly figure out the shape of the (non-existent) rows
of the two-dimensional array? This can be fixed in many ways, but adding a type ascription to the array is one of them:
[] : [0][2]i64.

Another common case arises when using holes. For an expression length ???, how would the type checker figure
out the intended size of the array that the hole represents? Again, this can be solved with a type ascription: length
(??? : [10]bool).

Finally, ambiguous sizes can also occur for functions that use size parameters only in “non-witnessing” position, mean-
ing sizes that are not actually uses as sizes of real arrays. An example:

def f [n] (g: [n]i64 -> i64) : i64 = n

def main = f (\xs -> xs[0])

Note that f is a higher order function, and that the size parameter n is only used in the type of the g function. Futhark’s
value model is such that given a value of type [n]i64 -> i64, we cannot extract an n from it. Using a function such
as f is only valid when n can be inferred from the usage, which is not the case here. Again, we can fix it by adding a
type ascription to disambiguate:

def main = f (\(xs:[1]i64) -> xs[0])

8.3 Module errors

8.3.1 “Module x is a parametric module

A parametric module is a module-level function:

module PM (P: {val x : i64}) = {
def y = x + 2

}

If we directly try to access the component of PM, as PM.y, we will get an error. To use PM we must first apply it to a
module of the expected type:

module M = PM { val x = 2 : i64 }

Now we can say M.y. See Modules for more.

8.4 Other errors

8.4.1 “Literal out of bounds”

This occurs for overloaded constants such as 1234 that are inferred by context to have a type that is too narrow for their
value. Example:

257 : u8

It is not an error to have a non-overloaded numeric constant whose value is too large for its type. The following is
perfectly cromulent:

8.3. Module errors 81

Futhark User’s Guide, Release 0.24.3

257u8

In such cases, the behaviour is overflow (so this is equivalent to 1u8).

8.4.2 “Type is ambiguous”

There are various cases where the type checker is unable to infer the full type of something. For example:

def f r = r.x

We know that r must be a record with a field called x, but maybe the record could also have other fields as well. Instead
of assuming a perhaps too narrow type, the type checker signals an error. The solution is always to add a type annotation
in one or more places to disambiguate the type:

def f (r: {x:bool, y:i32}) = r.x

Usually the best spot to add such an annotation is on a function parameter, as above. But for ambiguous sum types, we
often have to put it on the return type. Consider:

def f (x: bool) = #some x

The type of this function is ambiguous, because the type checker must know what other possible contructors (apart
from #some) are possible. We fix it with a type annotation on the return type:

def f (x: bool) : (#some bool | #none) = #just x

See Type Abbreviations for how to avoid typing long types in several places.

8.4.3 “The x operator may not be redefined”

The && and || operators have magical short-circuiting behaviour, and therefore may not be redefined. There is no way
to define your own short-circuiting operators.

8.4.4 “Unmatched cases in match expression”

Futhark requires match expressions to be exhaustive - that is, cover all possible forms of the value being matched.
Example:

def f (x: i32) =
match x case 0 -> false

case 1 -> true

Usually this is an actual bug, and you fix it by adding the missing cases. But sometimes you know that the missing
cases will never actually occur at run-time. To satisfy the type checker, you can turn the final case into a wildcard that
matches anything:

def f (x: i32) =
match x case 0 -> false

case _ -> true

Alternatively, you can add a wildcard case that explicitly asserts that it should never happen:

82 Chapter 8. Compiler Error Index

Futhark User’s Guide, Release 0.24.3

def f (x: i32) =
match x case 0 -> false

case 1 -> true
case _ -> assert false false

See here for details on how to use assert.

8.4.5 “Full type of x is not known at this point”

When performing a record update, the type of the field we are updating must be known. This restriction is based on a
limitation in the type type checker, so the notion of “known” is a bit subtle:

def f r : {x:i32} = r with x = 0

Even though the return type annotation disambiguates the type, this program still fails to type check. This is because
the return type is not consulted until after the body of the function has been checked. The solution is to put a type
annotation on the parameter instead:

def f (r : {x:i32}) = r with x = 0

8.5 Entry points

8.5.1 “Entry points may not be declared inside modules.”

This occurs when the program uses the entry keyword inside a module:

module m = {
entry f x = x + 1

}

Entry points can only be declared at the top level of a file. When we wish to make a function from inside a module
available as an entry point, we must define a wrapper function:

module m = {
def f x = x + 1

}

entry f = m.f

8.5.2 “Entry point functions may not be polymorphic.”

Entry points are Futhark functions that can be called from other languages, and are therefore limited how advanced
their types can be. In this case, the problem is that an entry point may not have a polymorphic type, for example:

entry dup 't (x: t) : (t,t) = x

This is an invalid entry point because it uses a type parameter 't. This error occurs frequently when we want to test
a polymorphic function. In such cases, the solution is to define one or more monomorphic entry points, each for a
distinct type. For example, to we can define a variety of monomorphic entry points that call the built-in function scan:

8.5. Entry points 83

Futhark User’s Guide, Release 0.24.3

entry scan_i32 (xs: []i32) = scan (+) 0 xs

entry scan_f32 (xs: []i32) = scan (*) 1 xs

8.5.3 “Entry point functions may not be higher-order.”

Entry points are Futhark functions that can be called from other languages, and are therefore limited how advanced
their types can be. In this case, the problem is that an entry point may use functions as input or output. For example:

entry apply (f: i32 -> i32) (x: i32) = f x

There is no simple workaround for such cases. One option is to manually defunctionalise to use a non-functional
encoding of the functional values, but this can quickly get very elaborate. Following up on the example above, if we
know that the only functions that would ever be passed are (+y) or (*y) for some y, we could do something like the
following:

type function = #add i32 | #mul i32

entry apply (f: function) (x: i32) =
match f
case #add y -> x + y
case #mul y -> x + y

Although in many cases, the best solution is simply to define a handful of simpler entry points instead of a single
complicated one.

8.5.4 “Entry point functions must not be size-polymorphic in their return type.”

This somewhat rare error occurs when an entry point returns an array that can have an arbitrary size chosen by its caller.
Contrived example:

-- Entry point taking no parameters.
entry f [n] : [0][n]i32 = []

The size n is chosen by the caller. Note that the n might be inferred and invisible, as in this example:

entry g : [0][]i32 = []

When calling functions within a Futhark program, size parameters are handled by type inference, but entry points are
called from the outside world, which is not subject to type inference. If you really must have entry points like this, turn
the size parameter into an ordinary parameter:

entry f (n: i64) : [0][n]i32 = []

84 Chapter 8. Compiler Error Index

https://en.wikipedia.org/wiki/Defunctionalization

CHAPTER

NINE

SERVER PROTOCOL

A Futhark program can be compiled to a server executable. Such a server maintains a Futhark context and presents
a line-oriented interface (over stdin/stdout) for loading and dumping values, as well as calling the entry points in the
program. The main advantage over the plain executable interface is that program initialisation is done only once, and
we can work with opaque values.

The server interface is not intended for human consumption, but is useful for writing tools on top of Futhark programs,
without having to use the C API. Futhark’s built-in benchmarking and testing tools use server executables.

A server executable is started like any other executable, and supports most of the same command line options (Exe-
cutable Options).

9.1 Basics

Each command is sent as a single line on standard input. A command consists of space-separated words. A word is
either a sequence of non-space characters (foo), or double quotes surrounding a sequence of non-newline and non-
quote characters ("foo bar").

The response is sent on standard output. The server will print %%% OK on a line by itself to indicate that a command
has finished. It will also print %%% OK at startup once initialisation has finished. If initialisation fails, the process will
terminate. If a command fails, the server will print %%% FAILURE followed by the error message, and then %%% OK
when it is ready for more input. Some output may also precede %%% FAILURE, e.g. logging statements that occured
before failure was detected. Fatal errors that lead to server shutdown may be printed to stderr.

9.2 Variables

Some commands produce or read variables. A variable is a mapping from a name to a Futhark value. Values can be
both transparent (arrays and primitives), but they can also be opaque values. These can be produced by entry points
and passed to other entry points, but cannot be directly inspected.

85

Futhark User’s Guide, Release 0.24.3

9.3 Types

All variables have types, and all entry points accept inputs and produce outputs of defined types. The notion of trans-
parent and opaque types are the same as in the C API: primitives and array of primitives are directly supported, and
everything else is treated as opaque. See also Value Mapping. When printed, types follow basic Futhark type syntax
without sizes (e.g. [][]i32). Uniqueness is not part of the types, but is indicated with an asterisk in the inputs and
outputs commands (see below).

9.4 Consumption and aliasing

Since the server protocol closely models the C API, the same rules apply to entry points that consume their arguments
(see Consumption and Aliasing). In particular, consumed variables must still be freed with the free command - but
this is the only operation that may be used on consumed variables.

9.5 Commands

The following commands are supported.

9.5.1 General Commands

types

Print the names of available types, one per line.

entry_points

Print the names of available entry points.

call entry o1 . . . oN i1 . . . iM

Call the given entry point with input from the variables i1 to iM. The results are stored in o1 to oN, which must not
already exist.

restore file v1 t1 . . . vN tN

Load N values from file and store them in the variables v1 to vN of types t1 to tN, which must not already exist.

86 Chapter 9. Server Protocol

Futhark User’s Guide, Release 0.24.3

store file v1 . . . vN

Store the N values in variables v1 to vN in file.

free v1 . . . vN

Delete the given variables.

rename oldname newname

Rename the variable oldname to newname, which must not already exist.

inputs entry

Print the types of inputs accepted by the given entry point, one per line. If the given input is consumed, the type is
prefixed by *.

outputs entry

Print the types of outputs produced by the given entry point, one per line. If the given output is guaranteed to be unique
(does not alias any inputs), the type is prefixed by *.

clear

Clear all internal caches and counters maintained by the Futhark context. Corresponds to
futhark_context_clear_caches().

pause_profiling

Corresponds to futhark_context_pause_profiling().

unpause_profiling

Corresponds to futhark_context_unpause_profiling().

report

Corresponds to futhark_context_report().

9.5. Commands 87

Futhark User’s Guide, Release 0.24.3

set_tuning_param param value

Corresponds to futhark_context_config_set_tuning_param().

tuning_params entry

For each tuning parameters relevant to the given entry point, print its name, then a space, then its class.

This is similar to on futhark_tuning_params_for_sum(), but note that this command prints names and not integers.

tuning_param_class param

Corresponds to futhark_get_tuning_param_class().

9.5.2 Record Commands

fields type

If the given type is a record, print a line for each field of the record. The line will contain the name of the field,
followed by a space, followed by the type of the field. Note that the type name can contain spaces. The order of fields
is significant, as it is the one expected by the new_record command.

new v0 type v1 . . . vN

Create a new variable v0 of type type, which must be a record type with N fields, where v1 to vN are variables with the
corresponding field types (the expected order is given by the fields command).

project to from field

Create a new variable to whose value is the field field of the record-typed variable from.

9.6 Environment Variables

9.6.1 FUTHARK_COMPILER_DEBUGGING

Turns on debugging output for the server when set to 1.

88 Chapter 9. Server Protocol

CHAPTER

TEN

C PORTING GUIDE

This short document contains a collection of tips and tricks for porting simple numerical C code to Futhark. Futhark’s
sequential fragment is powerful enough to permit a rather straightforward translation of sequential C code that does
not rely on pointer mutation. Additionally, we provide hints on how to recognise C coding patterns that are symptoms
of C’s weak type system, and how better to organise it in Futhark.

One intended audience of this document is a programmer who needs to translate a benchmark application written in
C, or needs to use a simple numerical algorithm that is already available in the form of C source code.

10.1 Where This Guide Falls Short

Some C code makes use of unstructured returns and nonlocal exits (return inside loops, for example). These are not
easy to express in Futhark, and will require massaging the control flow a bit. C code that uses goto is likewise not easy
to port.

10.2 Types

Futhark provides scalar types that match the ones commonly used in C: u8/u16/u32/u64 for the unsigned integers,
i8/i16/i32/i64 for the signed, and f32/f64 for float and double respectively. In contrast to C, Futhark does
not automatically promote types in expressions - you will have to manually make sure that both operands to e.g. a
multiplication are of the exact same type. This means that you will need to understand exactly which types a given
expression in original C program operates on, which generally boils down to converting the type of the (type-wise)
smaller operand to that of the larger. Note that the Futhark bool type is not considered a number.

10.3 Operators

Most of the C operators can be found in Futhark with their usual names. Note however that the Futhark / and % operators
for integers round towards negative infinity, whereas their counterparts in C round towards zero. You can write // and
%% if you want the C behaviour. There is no difference if both operands are non-zero, but // and %% may be slightly
faster. For unsigned numbers, they are exactly the same.

89

Futhark User’s Guide, Release 0.24.3

10.4 Variable Mutation

As a sequential language, most C programs quite obviously rely heavily on mutating variables. However, in many
programs, this is done in a static manner without indirection through pointers (except for arrays; see below), which is
conceptually similar to just declaring a new variable of the same name that shadows the old one. If this is the case, a C
assignment can generally be translated to just a let-binding. As an example, let us consider the following function for
computing the modular multiplicative inverse of a 16-bit unsigned integer (part of the IDEA encryption algorithm):

static uint16_t ideaInv(uint16_t a) {
uint32_t b;
uint32_t q;
uint32_t r;
int32_t t;
int32_t u;
int32_t v;

b = 0x10001;
u = 0;
v = 1;

while(a > 0)
{
q = b / a;
r = b % a;

b = a;
a = r;

t = v;
v = u - q * v;
u = t;

}

if(u < 0)
u += 0x10001;

return u;
}

Each iteration of the loop mutates the variables a, b, v, and u in ways that are visible to the following iteration. Con-
versely, the “mutations” of q, r, and t are not truly mutations, and the variable declarations could be moved inside
the loop if we wished. Presumably, the C programmer left them outside for aesthetic reasons. When translating such
code, it is important to determine exactly how much true mutation is going on, and how much is just reuse of variable
space. This can usually be done by checking whether a variable is read before it is written in any given iteration - if
not, then it is not true mutation. The variables that change value from one iteration of the loop to the next will need to
be maintained as merge parameters of the Futhark do-loop.

The Futhark program resulting from a straightforward port looks as follows:

let main(a: u16): u32 =
let b = 0x10001u32
let u = 0i32
let v = 1i32 in

(continues on next page)

90 Chapter 10. C Porting Guide

Futhark User’s Guide, Release 0.24.3

(continued from previous page)

let (_,_,u,_) = loop ((a,b,u,v)) while a > 0u16 do
let q = b / u32.u16(a)
let r = b % u32.u16(a)

let b = u32.u16(a)
let a = u16.u32(r)

let t = v
let v = u - i32.u32 (q) * v
let u = t in
(a,b,u,v)

in u32.i32(if u < 0 then u + 0x10001 else u)

Note the heavy use of type conversion and type suffixes for constants. This is necessary due to Futhark’s lack of implicit
conversions. Note also the conspicuous way in which the do-loop is written - the result of a loop iteration consists of
variables whose names are identical to those of the merge parameters.

This program can still be massaged to make it more idiomatic Futhark - for example, the variable t only serves to store
the old value of v that is otherwise clobbered. This can be written more elegantly by simply inlining the expressions
in the result part of the loop body.

10.5 Arrays

Dynamically sized multidimensional arrays are somewhat awkward in C, and are often simulated via single-dimensional
arrays with explicitly calculated indices:

a[i * M + j] = foo;

This indicates a two-dimensional array awhose inner dimension is of size M. We can usually look at where a is allocated
to figure out what the size of the outer dimension must be:

a = malloc(N * M * sizeof(int));

We see clearly that a is a two-dimensional integer array of size N times M - or of type [N][M]i32 in Futhark. Thus, the
update expression above would be translated as:

let a[i,j] = foo in
...

C programs usually first allocate an array, then enter a loop to provide its initial values. This is not possible in Futhark
- consider whether you can write it as a replicate, an iota, or a map. In the worst case, use replicate to obtain
an array of the desired size, then use a do-loop with in-place updates to initialise it (but note that this will run stricly
sequentially).

10.5. Arrays 91

Futhark User’s Guide, Release 0.24.3

92 Chapter 10. C Porting Guide

CHAPTER

ELEVEN

FUTHARK COMPARED TO OTHER FUNCTIONAL LANGUAGES

This guide is intended for programmers who are familiar with other functional languages and want to start working
with Futhark.

Futhark is a simple language with a complex compiler. Functional programming is fundamentally well suited to data
parallelism, so Futhark’s syntax and underlying concepts are taken directly from established functional languages such
as Haskell and the ML family. While Futhark does add a few small conveniences (built-in array types) and one compli-
cated and unusual feature (in-place updates via uniqueness types, see In-place Updates), a programmer familiar with a
common functional language should be able to understand the meaning of a Futhark program and quickly begin writing
their own programs. To speed up this process, we describe here some of the various quirks and unexpected limitations
imposed by Futhark. We also recommended reading some of the example programs along with this guide. The guide
does not cover all Futhark features worth knowing, so do also skim Language Reference and the Glossary.

11.1 Basic Syntax

Futhark uses a keyword-based structure, with optional indentation solely for human readability. This aspect differs
from Haskell and F#.

Names are lexically divided into identifiers and symbols:

• Identifiers begin with a letter or underscore and contain letters, numbers, underscores, and apostrophes.

• Symbols contain the characters found in the default operators (+-*/%=!><|&^).

All function and variable names must be identifiers, and all infix operators are symbols. An identifier can be used as
an infix operator by enclosing it in backticks, as in Haskell.

Identifiers are case-sensitive, and there is no restriction on the case of the first letter (unlike Haskell and OCaml, but
like Standard ML and Flix).

User-defined operators are possible, but the fixity of the operator depends on its name. Specifically, the fixity of a
user-defined operator op is equal to the fixity of the built-in operator that is the longest prefix of op. For example, <<=
would have the same fixity as <<, and =<< the same as =. This rule is the same as the rule found in OCaml and F#.

Top-level functions and values are defined with def as in Flix. Local variables are bound with let.

93

https://futhark-lang.org/examples.html

Futhark User’s Guide, Release 0.24.3

11.2 Evaluation

Futhark is a completely pure language, with no cheating through monads, effect systems, or anything of the sort.

Evaluation is eager or call-by-value, like most non-Haskell languages. However, there is no defined evaluation order.
Furthermore, the Futhark compiler is permitted to turn non-terminating programs into terminating programs, for ex-
ample by removing dead code that might cause an error. Moreover, there is no way to handle errors within a Futhark
program (no exceptions or similar); although errors are gracefully reported to whatever invokes the Futhark program.

The evaluation semantics are entirely sequential, with parallelism being solely an operational detail. Hence, race
conditions are impossible. The Futhark compiler does not automatically go looking for parallelism. Only certain
special constructs and built-in library functions (such as map, reduce, scan, and filter) may be executed in parallel.

Currying and partial application work as usual (although functions are not fully first class; see Types). Although the
assert construct looks like a function, it is not, and it cannot be partially applied.

Lambda terms are written as \x -> x + 2, as in Haskell.

A Futhark program is read top-down, and all functions must be declared in the order they are used, like Standard ML.
Unlike just about all functional languages, recursive functions are not supported. Most of the time, you will use bulk
array operations instead, but there is also a dedicated loop language construct, which is essentially syntactic sugar for
tail recursive functions.

11.3 Types

Futhark supports a range of integer types, floating point types, and booleans (see Primitive Types and Values). A
numeric literal can be suffixed with its desired type, such as 1i8 for an eight-bit signed integer. Un-adorned numerals
have their type inferred based on use. This only works for built-in numeric types.

Arrays are a built-in type. The type of an array containing elements of type t is written []t (not [t] as in Haskell), and
we may optionally annotate it with a size as [n]t (see Shape Declarations). Array values are written as [1,2,3]. Array
indexing is written a[i] with no space allowed between the array name and the brace. Indexing of multi-dimensional
arrays is written a[i,j]. Arrays are 0-indexed.

All types can be combined in tuples as usual, as well as in structurally typed records, as in Standard ML and Flix.
Non-recursive sum types are supported, and are also structurally typed. Abstract types are possible via the module
system; see Modules.

If a variable foo is a record of type {a: i32, b: bool}, then we access field a with dot notation: foo.a. Tuples
are a special case of records, where all the fields have a 0-indexed numeric label. For example, (i32, bool) is the
same as {0: i32, 1: bool}, and can be indexed as foo.1.

Sum types are defined as constructors separated by a vertical bar (|). Constructor names always start with a #. For
example, #red | #blue i32 is a sum type with the constructors #red and #blue, where the latter has an i32 as
payload. The terms #red and #blue 2 produce values of this type. Constructor applications must always be fully
saturated. Due to the structural type system, type annotations are sometimes necessary to resolve ambiguities. For
example, the term #blue 2 can produce a value of any type that has an appropriate constructor.

Function types are written with the usual a -> b notation, and functions can be passed as arguments to other functions.
However, there are some restrictions:

• A function cannot be put in an array (but a record or tuple is fine).

• A function cannot be returned from a branch.

• A function cannot be used as a loop parameter.

Function types interact with type parameters in a subtle way:

94 Chapter 11. Futhark Compared to Other Functional Languages

Futhark User’s Guide, Release 0.24.3

def id 't (x: t) = x

This declaration defines a function id that has a type parameter t. Here, t is an unlifted type parameter, which is
guaranteed never to be a function type, and so in the body of the function we could choose to put parameter values of
type t in an array. However, it means that this identity function cannot be called on a functional value. Instead, we
probably want a lifted type parameter:

def id '^t (x: t) = x

Such lifted type parameters are not restricted from being instantiated with function types. On the other hand, in the
function definition they are subject to the same restrictions as functional types.

Futhark supports Hindley-Milner type inference (with some restrictions), so we could also just write it as:

def id x = x

Type abbreviations are possible:

type foo = (i32, i32)

Type parameters are supported as well:

type pair 'a 'b = (a, b)

As with everything else, they are structurally typed, so the types pair i32 bool and (i32, bool) are entirely inter-
changeable. Most unusually, this is also the case for sum types. The following two types are entirely interchangeable:

type maybe 'a = #just a | #nothing

type option 'a = #nothing | #just a

Only for abstract types, where the definition has been hidden via the module system, do type names have any signifi-
cance.

Size parameters can also be passed:

type vector [n] t = [n]t
type i32matrix [n][m] = [n] (vector [m] i32)

Note that for an actual array type, the dimensions come before the element type, but with a type abbreviation, a size is
just another parameter. This easily becomes hard to read if you are not careful.

11.3. Types 95

Futhark User’s Guide, Release 0.24.3

96 Chapter 11. Futhark Compared to Other Functional Languages

CHAPTER

TWELVE

BINARY DATA FORMAT

Futhark programs compiled to an executable support both textual and binary input. Both are read via standard input,
and can be mixed, such that one argument to an entry point may be binary, and another may be textual. The binary
input format takes up significantly less space on disk, and can be read much faster than the textual format. This chapter
describes the binary input format and its current limitations. The input formats (whether textual or binary) are not used
for Futhark programs compiled to libraries, which instead use whichever format is supported by their host language.

Currently reading binary input is only supported for compiled programs. It is not supported for futhark run.

You can generate random data in the binary format with futhark dataset (futhark-dataset). This tool can also be
used to convert between binary and textual data.

Futhark-generated executables can be asked to generate binary output with the -b option.

12.1 Specification

Elements that are bigger than one byte are always stored using little endian – we mostly run our code on x86 hardware
so this seemed like a reasonable choice.

When reading input for an argument to the entry function, we need to be able to differentiate between text and binary
input. If the first non-whitespace character of the input is a b we will parse this argument as binary, otherwise we will
parse it in text format. Allowing preceding whitespace characters makes it easy to use binary input for some arguments,
and text input for others.

The general format has this header:

b <version> <num_dims> <type> <values...>

Where version is a byte containing the version of the binary format used for encoding (currently 2), num_dims is the
number of dimensions in the array as a single byte (0 for scalar), and type is a 4 character string describing the type
of the values(s) – see below for more details.

Encoding a scalar value is done by treating it as a 0-dimensional array:

b <version> 0 <type> <value>

To encode an array, we encode the number of dimensions n as a single byte, each dimension dim_i as an unsigned
64-bit little endian integer, and finally all the values in row-major order in their binary little endian representation:

b <version> <n> <type> <dim_1> <dim_2> ... <dim_n> <values...>

97

Futhark User’s Guide, Release 0.24.3

12.1.1 Type Values

A type is identified by a 4 character ASCII string (four bytes). Valid types are:

" i8"
" i16"
" i32"
" i64"
" u8"
" u16"
" u32"
" u64"
" f16"
" f32"
" f64"
"bool"

Note that unsigned and signed integers have the same byte-level representation.

Values of type bool are encoded with a byte each. The results are undefined if this byte is not either 0 or 1.

98 Chapter 12. Binary Data Format

CHAPTER

THIRTEEN

GLOSSARY

The following defines various Futhark-specific terms used in the documentation and in compiler output.

Abstract type
A type whose definition has been hidden through a module ascription.

Aliases
The aliases of a variable is a set of those other variables with which it might be aliased.

Aliasing
Whether two values might potentially share the same memory at run-time. Clearly, after let y = x, x and y
are aliased. Also, the slice x[i:j] is also aliased with x. Aliasing is used to type-check In-place Updates.

Anonymous size
In a type expression, a size of the form []. Will be elaborated to some name (possibly existentially bound) by
the type checker.

Attribute
Auxiliary information attached to an expression or declaration, which the compiler or other tool might use for
various purposes. See Attributes.

Coercion
Shorthand for a Size coercion.

Compiler backend
A Futhark compiler backend is technically only responsible for the final compilation result, but from the user’s
perspective is also coupled with a compiler pipeline. The backend corresponds to compiler subcommand, such
as futhark c, futhark cuda, futhark multicore, etc.

Compiler frontend
The part of the compiler responsible for reading code from files, parsing it, and type checking it.

Compiler pipeline
The series of compiler passes that lie between the compiler frontend and the compiler backend. Responsible
for the majority of program optimisations. In principle the pipeline could be configurable, but in practice each
backend is coupled with a specific pipeline.

Constructive use
A variable n is used constructively in a type if it is used as the size of an array at least once outside of any function
arrows. For example, the following types use n constructively:

• [n]bool

• ([n]bool, bool -> [n]bool)

The following do not:

• [n+1]bool

99

Futhark User’s Guide, Release 0.24.3

• bool -> [n]bool

Consumption
If a value is passed for a consuming function parameter, that value may no longer be used. We say that a an
expression is with consumption if any values are consumed in the expression. This is banned in some cases
where that expression might otherwise be evaluated multiple times. See In-place Updates.

Data parallelism
Performing the same operation on multiple elements of a collection, such as an array. The map SOAC is the
simplest example. This is the form of parallelism supported by Futhark. See also Wikipedia.

Defunctionalisation
A program transformation always performed by the Futhark compiler, that replaces function values with non-
function values. The goal is to avoid having indirect calls through function pointers at run-time. To permit
zero-overhead defunctionalisation, the Futhark type rules impose restrictions on lifted types.

Defunctorisation
A program transformation always performed by the Futhark compiler, that compiles away modules using an
approach similar to defunctionalisation. This makes using e.g. a parametric module completely free at run-time.

Elaboration
The process conducted out by the type checker, where it infers and inserts information not explicitly provided in
the program. The most important part of this is type inference, but also includes various other things.

Existential size
An existential size is a size that is bound by the existential quantifier ? in the same type. For example, in a type
[n]bool -> ?[m].[m]bool, the size m is existential. When such a function is applied, each existential size is
instantiated as an unknown size.

Functor
The Standard ML term for what Futhark calls a parametric module.

GPU backend
A compiler backend that ultimately produces GPU code. The backends opencl and gpu are GPU backends.
These have more restrictions than some other backends, particularly with respect to irregular nested data paral-
lelism.

Higher-ranked type
A type that does not describe values. Can be seen as a partially applied type constructor. Not directly supported
by Futhark, but a similar effect can be achieved through the Modules.

In-place updates
A somewhat misleading term for the syntactic forms x with [i] = v and let x[i] = v. These are not
semantic in-place updates, but can be operationally understood as thus. See In-place Updates.

Invariant
Not variant.

Irregular
Something that is not regular. Usually used as shorthand for irregular nested data parallelism or irregular array.

Irregular array
An array where the elements do not have the same size. For example, [[1], [2,3] is irregular. These are not
supported in Futhark.

Irregular memory allocation
A situation that occurs when the generated code has to allocate memory inside of an instance of nested data
parallelism, where the amount to allocate is variant to the outer parallel levels. As a contrived example (that the
actual compiler would just optimise away), consider:

100 Chapter 13. Glossary

https://en.wikipedia.org/wiki/Data_parallelism

Futhark User’s Guide, Release 0.24.3

map (\n -> let A = iota n
in A[10])

ns

To construct the array A in memory, we require 8n bytes, but n is not known until we start executing the body of
the map. While such simple cases are handled, more complicated ones that involve nested sequential loops are
not supported by the GPU backends.

Irregular nested data parallelism
An instance of nested data parallelism, where the parallel width of inner parallelism is variant to the outer
parallelism. For example, the following expression exhibits irregular nested data parallelism:

map (\n -> reduce (+) 0 (iota n)) ns

Because the width of the inner reduce is n, and every iteration of the outer map has a (potentially) different
n. The Futhark GPU backends currently do not support irregular nested data parallelism well, and will usually
sequentialise the irregular loops. In cases that require an irregular memory allocation, the compiler may entirely
fail to generate code.

Lifted type
A type that may contain functions, including function types themselves. These have various restrictions on their
use in order to support defunctionalisation. See Higher-order functions.

Module
A mapping from names to definitions of types, values, or nested modules. See Modules.

Module ascription
A feature of the module system through which the contents of a module can be hidden. Written as m : mt
where m is a module expression and mt is a module type expression. See Modules.

Module expression
An expression that is evaluated at compile time, through defunctorisation to a module. Most commonly just the
name of a module.

Module type
A description of the interface of a module. Most commonly used to hide contents in a module ascription or to
require implementation of an interface in a parametric module.

Module type expression
An expression that is evaluated during type-checking to a module type.

Monomorphisation
A program transformation that instantiates a copy of each polymorphic functions for each type it is used with.
Performed by the Futhark compiler.

Nested data parallelism
Nested data parallelism occurs when a parallel construct is used inside of another parallel construct. For example,
a reduce might be used inside a function passed to map.

Parallel width
A somewhat informal term used to describe the size of an array on which we apply a SOAC. For example, if x
has type [1000]i32, then map f x has a parallel width of 1000. Intuitively, the “amount of processors” that
would be needed to fully exploit the parallelism of the program, although nested data parallelism muddles the
picture.

Parametric module
A function from modules to modules. The most powerful form of abstraction provided by Futhark.

101

Futhark User’s Guide, Release 0.24.3

Polymorphic
Usually means a polymorphic function, but sometimes a parametric modules. Should not be used to describe a
type constructor.

Polymorphic function
A function with type parameters, such that the function can be applied to arguments of various types. Compiled
using monomorphisation.

Polymorphism
The concept of being polymorphic.

Recursion
A function that calls itself. Currently not supported in Futhark.

Regular nested data parallelism
An instance of nested data parallelism that is not irregular. Fully supports by any GPU backend.

Size
The symbolic size of an array dimension or abstract type.

Size argument
An argument to a type constructor in a type expression of the form [n] or []. The latter is called an anonymous
size. Must match a corresponding size parameter.

Size parameter
A parameter of a polymorphic function or type constructor that ranges over sizes. These are written as [n] for
some n, after which n is in scope as a term of type i64 within the rest of the definition. Do not confuse them
with type parameters.

Size types
Size-dependent types

An umbrella term for the part of Futhark’s type system that tracks array sizes. See Size Types.

Size-lifted type
A type that may contain internal hidden sizes. These cannot be array elements, as that might potentially result
in an irregular array. See Type Abbreviations.

SOAC
Second Order Array Combinator

A term covering the main parallel building blocks provided by Futhark: functions such as map, reduce, scan, and
so on. They are second order because they accept a functional argument, and so permit nested data parallelism.

Type
A classification of values. i32 and [10]i32 are examples of types.

Type abbreviation
A shorthand for a longer type, e.g. type t = [100]i32. Can accept type parameters and size parameters. The
definition is visible to users, unless hidden with a module ascription. See Type Abbreviations.

Type argument
An argument to a type constructor that is itself a type. Must match a corresponding type parameter.

Type constructor
A type abbreviation or abstract type that has at least one type parameter or size parameter. Futhark does not
support higher-ranked types, so when referencing a type constructor in a type expression, you must provide
corresponding type arguments and size arguments in an appopriate order.

Type expression
A syntactic construct that is evaluated to a type in the type checker, but may contain uses of type abbreviations
and anonymous sizes.

102 Chapter 13. Glossary

Futhark User’s Guide, Release 0.24.3

Type parameter
A parameter of a polymorphic function or type constructor that ranges over types. These are written as ‘t for some
t, after which t is in scope as a type within the rest of the definition. Do not confuse them with size parameters.

Uniqueness types
A somewhat misleading term that describes Futhark’s system of allowing consumption of values, in the interest
of allowing in-place updates. The only place where uniqueness truly occurs is in return types, where e.g. the
return type of copy is unique to indicate that the result does not alias the argument.

Unknown size
A size produced by invoking a function whose result type contains an existentially quantified size, such as
filter.

Value
An object such as the integer 123 or the array [1,2,3]. Expressions variables are bound to values and all valid
expressions have a type describing the form of values they can return.

Variant
When some value v computed inside a loop takes a different value for each iteration inside the loop, we say that v
is variant to the loop (and otherwise invariant). Often used to talk about irregularity. When something is nested
inside multiple loops, it may be variant to just one of them.

103

Futhark User’s Guide, Release 0.24.3

104 Chapter 13. Glossary

CHAPTER

FOURTEEN

FUTHARK

14.1 SYNOPSIS

futhark <subcommand> options. . .

14.2 DESCRIPTION

Futhark is a data-parallel functional array language. Through various subcommands, the futhark tool provides fa-
cilities for compiling, developing, or analysing Futhark programs. Most subcommands are documented in their own
manpage. For example, futhark opencl is documented as futhark-opencl. The remaining subcommands are docu-
mented below.

14.3 COMMANDS

14.3.1 futhark benchcmp FILE_A FILE_B

Compares two Futhark benchmarks and reports changes in performance. The files must be formatted in the same
manner as a JSON file returned from futhark-bench.

14.3.2 futhark check [-w] PROGRAM

Check whether a Futhark program type checks. With -w, no warnings are printed.

14.3.3 futhark check-syntax PROGRAM

Check whether a Futhark program is syntactically correct.

105

Futhark User’s Guide, Release 0.24.3

14.3.4 futhark datacmp FILE_A FILE_B

Check whether the two files contain the same Futhark values. The files must be formatted using the general Futhark
data format that is used by all other executable and tools (such as futhark-dataset). All discrepancies will be reported.
This is in contrast to futhark-test, which only reports the first one.

14.3.5 futhark dataget PROGRAM DATASET

Find the test dataset whose description contains DATASET (e.g. #1) and print it in binary representation to standard
output. This does not work for script datasets.

14.3.6 futhark defs PROGRAM

Print names and locations of every top-level definition in the program (including top levels of modules), one per line.
The program need not be type-correct, but it must not contain syntax errors.

14.3.7 futhark dev options. . . PROGRAM

A Futhark compiler development command, intentionally undocumented and intended for use in developing the Futhark
compiler, not for programmers writing in Futhark.

14.3.8 futhark eval [-f FILE] [-w] <exprs. . . >

Evaluates expressions given as command-line arguments. Optionally allows a file import using -f.

14.3.9 futhark hash PROGRAM

Print a hexadecimal hash of the program AST, including all non-builtin imports. Supposed to be invariant to whitespace
changes.

14.3.10 futhark imports PROGRAM

Print all non-builtin imported Futhark files to stdout, one per line.

14.3.11 futhark lsp

Run an LSP (Language Server Protocol) server for Futhark that communicates on standard input. There is no reason
to run this by hand. It is used by LSP clients to provide editor features.

106 Chapter 14. futhark

Futhark User’s Guide, Release 0.24.3

14.3.12 futhark query PROGRAM LINE COL

Print information about the variable at the given position in the program.

14.3.13 futhark thanks

Expresses gratitude.

14.3.14 futhark tokens FILE

Print the tokens the given Futhark source file; one per line.

14.4 SEE ALSO

futhark-opencl, futhark-c, futhark-python, futhark-pyopencl, futhark-wasm, futhark-wasm-multicore, futhark-ispc,
futhark-dataset, futhark-doc, futhark-test, futhark-bench, futhark-run, futhark-repl, futhark-literate

14.4. SEE ALSO 107

Futhark User’s Guide, Release 0.24.3

108 Chapter 14. futhark

CHAPTER

FIFTEEN

FUTHARK-AUTOTUNE

15.1 SYNOPSIS

futhark autotune [options. . .] <program.fut>

15.2 DESCRIPTION

futhark autotune attemps to find optimal values for threshold parameters given representative datasets. This is done
by repeatedly running running the program through futhark-bench with different values for the threshold parameters.
When futhark autotune finishes tuning a program foo.fut, the results are written to foo.fut.tuning, which
will then automatically be picked up by subsequent uses of futhark-bench and futhark-test.

15.3 OPTIONS

--backend=name The backend used when compiling Futhark programs (without leading futhark,
e.g. just opencl).

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark autotune itself.

--pass-option=opt Pass an option to programs that are being run. For example, we might want to run
OpenCL programs on a specific device:

futhark autotune prog.fut --backend=opencl --pass-option=-
→˓dHawaii

--runs=count The number of runs per data set.

-v, --verbose Print verbose information about what the tuner is doing. Pass multiple times to
increase the amount of information printed.

--skip-compilation Do not run the compiler, and instead assume that the program has already been
compiled. Use with caution.

--spec-file=FILE Ignore the test specification in the program file(s), and instead load them from this
other file. These external test specifications use the same syntax as normal, but
without line comment prefixes A == is still expected.

--tuning=EXTENSION Change the extension used for tuning files (.tuning by default).

109

Futhark User’s Guide, Release 0.24.3

--timeout=seconds Initial tuning timeout for each dataset in seconds. After running the intitial tuning
run on each dataset, the timeout is based on the run time of that initial tuning.
Defaults to 60.

A negative timeout means to wait indefinitely.

15.4 SEE ALSO

futhark-bench

110 Chapter 15. futhark-autotune

CHAPTER

SIXTEEN

FUTHARK-BENCH

16.1 SYNOPSIS

futhark bench [options. . .] programs. . .

16.2 DESCRIPTION

This tool is the recommended way to benchmark Futhark programs. Programs are compiled using the specified backend
(c by default), then run a number of times for each test case, and the arithmetic mean runtime and 95% confidence
interval printed on standard output. Refer to futhark-test for information on how to format test data. A program will be
ignored if it contains no data sets - it will not even be compiled.

If compilation of a program fails, then futhark bench will abort immediately. If execution of a test set fails, an error
message will be printed and benchmarking will continue (and --json will write the file), but a non-zero exit code will
be returned at the end.

16.3 METHODOLOGY

For each program and dataset, futhark bench first does a single “warmup” run that is discarded. After that it uses a
two-phase technique.

1. The initial phase performs ten runs (change with -r), or perform runs for at least half a second, whichever takes
longer. If the resulting measurements are sufficiently statistically robust (determined using standard deviation
and autocorrelation metrics), the results are produced and the second phase is not entered. Otherwise, the results
are discarded and the second phase entered.

2. The convergence phase keeps performing runs until a measurement of sufficient statistical quality is reached.

The notion of “sufficient statistical quality” is based on heuristics. The intent is that futhark bench will in most
cases do the right thing by default, both when benchmarking both long-running programs and short-running programs.
If you want complete control, disable the convergence phase with --no-convergence-phase and set the number of
runs you want with -r.

111

Futhark User’s Guide, Release 0.24.3

16.4 OPTIONS

--backend=name The backend used when compiling Futhark programs (without leading futhark,
e.g. just opencl).

--cache-extension=EXTENSION For a program foo.fut, pass --cache-file foo.fut.
EXTENSION. By default, --cache-file is not passed.

--concurrency=NUM The number of benchmark programs to prepare concurrently. Defaults to the
number of cores available. Prepare means to compile the benchmark, as well as
generate any needed datasets. In some cases, this generation can take too much
memory, in which case lowering --concurrency may help.

--convergence-max-seconds=NUM Don’t run the convergence phase for longer than this. This does
not mean that the measurements have converged. Defaults to 300 seconds (five
minutes).

--entry-point=name Only run entry points with this name.

--exclude-case=TAG Do not run test cases that contain the given tag. Cases marked with “nobench”,
“disable”, or “no_foo” (where foo is the backend used) are ignored by default.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark bench itself.

--ignore-files=REGEX Ignore files whose path match the given regular expression.

--json=file Write raw results in JSON format to the specified file.

--no-tuning Do not look for tuning files.

--no-convergence-phase Do not run the convergence phase.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

futhark bench prog.fut --backend=opencl --pass-option=-
→˓dHawaii

--pass-compiler-option=opt Pass an extra option to the compiler when compiling the programs.

--runner=program If set to a non-empty string, compiled programs are not run directly, but instead
the indicated program is run with its first argument being the path to the compiled
Futhark program. This is useful for compilation targets that cannot be executed
directly (as with futhark-pyopencl on some platforms), or when you wish to run
the program on a remote machine.

--runs=count The number of runs per data set.

--skip-compilation Do not run the compiler, and instead assume that each benchmark program has
already been compiled. Use with caution.

--spec-file=FILE Ignore the test specification in the program file(s), and instead load them from this
other file. These external test specifications use the same syntax as normal, but
without line comment prefixes. A == is still expected.

--timeout=seconds If the runtime for a dataset exceeds this integral number of seconds, it is aborted.
Note that the time is allotted not per run, but for all runs for a dataset. A twenty
second limit for ten runs thus means each run has only two seconds (minus ini-
tialisation overhead).

A negative timeout means to wait indefinitely.

112 Chapter 16. futhark-bench

Futhark User’s Guide, Release 0.24.3

-v, --verbose Print verbose information about what the benchmark is doing. Pass multiple times
to increase the amount of information printed.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which is
suffixed to the name of the program. For example, given --tuning=tuning (the
default), the program foo.fut will be passed the tuning file foo.fut.tuning if
it exists.

16.5 EXAMPLES

The following program benchmarks how quickly we can sum arrays of different sizes:

-- How quickly can we reduce arrays?
--
-- ==
-- nobench input { 0i64 }
-- output { 0i64 }
-- input { 100i64 }
-- output { 4950i64 }
-- compiled input { 10000i64 }
-- output { 49995000i64 }
-- compiled input { 1000000i64 }
-- output { 499999500000i64 }

let main(n: i64): i64 =
reduce (+) 0 (iota n)

16.6 SEE ALSO

futhark-c, futhark-test

16.5. EXAMPLES 113

Futhark User’s Guide, Release 0.24.3

114 Chapter 16. futhark-bench

CHAPTER

SEVENTEEN

FUTHARK-C

17.1 SYNOPSIS

futhark c [options. . .] <program.fut>

17.2 DESCRIPTION

futhark c translates a Futhark program to sequential C code, and either compiles that C code with a C compiler (see
below) to an executable binary program, or produces a .h and .c file that can be linked with other code.. The standard
Futhark optimisation pipeline is used, and

The resulting program will read the arguments to the entry point (main by default) from standard input and print its
return value on standard output. The arguments are read and printed in Futhark syntax.

17.3 OPTIONS

-h Print help text to standard output and exit.

--entry-point NAME Treat this top-level function as an entry point.

--library Generate a library instead of an executable. Appends .c/.h to the name indicated
by the -o option to determine output file names.

-o outfile Where to write the result. If the source program is named foo.fut, this defaults
to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

--server Generate a server-mode executable that reads commands from stdin.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

115

Futhark User’s Guide, Release 0.24.3

17.4 ENVIRONMENT VARIABLES

CC

The C compiler used to compile the program. Defaults to cc if unset.

CFLAGS

Space-separated list of options passed to the C compiler. Defaults to -O3 -std=c99 if unset.

17.5 EXECUTABLE OPTIONS

The following options are accepted by executables generated by futhark c.

-h, --help Print help text to standard output and exit.

-b, --binary-output Print the program result in the binary output format. The default is human-
readable text, which is very slow. Not accepted by server-mode executables.

--cache-file=FILE Store any reusable initialisation data in this file, possibly speeding up subsequent
launches.

-D, --debugging Perform possibly expensive internal correctness checks and verbose logging. Im-
plies -L.

-e, --entry-point=FUN The entry point to run. Defaults to main. Not accepted by server-mode exe-
cutables.

-L, --log Print various low-overhead logging information to stderr while running.

-n, --no-print-result Do not print the program result. Not accepted by server-mode executables.

-r, --runs=NUM Perform NUM runs of the program. With -t, the runtime for each individual run
will be printed. Additionally, a single leading warmup run will be performed (not
counted). Only the final run will have its result written to stdout. Not accepted by
server-mode executables.

-t, --write-runtime-to=FILE Print the time taken to execute the program to the indicated file, an inte-
gral number of microseconds. Not accepted by server-mode executables.

17.6 SEE ALSO

futhark-opencl, futhark-cuda, futhark-test

116 Chapter 17. futhark-c

CHAPTER

EIGHTEEN

FUTHARK-CUDA

18.1 SYNOPSIS

futhark cuda [options. . .] <program.fut>

18.2 DESCRIPTION

futhark cuda translates a Futhark program to C code invoking CUDA kernels, and either compiles that C code with
a C compiler to an executable binary program, or produces a .h and .c file that can be linked with other code. The
standard Futhark optimisation pipeline is used.

futhark cuda uses -lcuda -lcudart -lnvrtc to link. If using --library, you will need to do the same when
linking the final binary.

The generated CUDA code can be called from multiple CPU threads, as it brackets every API operation with
cuCtxPushCurrent() and cuCtxPopCurrent().

18.3 OPTIONS

Accepts the same options as futhark-c.

18.4 ENVIRONMENT VARIABLES

CC

The C compiler used to compile the program. Defaults to cc if unset.

CFLAGS

Space-separated list of options passed to the C compiler. Defaults to -O -std=c99 if unset.

117

Futhark User’s Guide, Release 0.24.3

18.5 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-c. The -t option behaves as with futhark-
opencl. For commonality, the options use OpenCL nomenclature (“group” instead of “thread block”).

The following additional options are accepted.

-h, --help Print help text to standard output and exit.

--default-group-size=INT The default size of thread blocks that are launched. Capped to the hardware
limit if necessary.

--default-num-groups=INT The default number of thread blocks that are launched.

--default-threshold=INT The default parallelism threshold used for comparisons when selecting be-
tween code versions generated by incremental flattening. Intuitively, the amount
of parallelism needed to saturate the GPU.

--default-tile-size=INT The default tile size used when performing two-dimensional tiling (the work-
group size will be the square of the tile size).

--dump-cuda=FILE Don’t run the program, but instead dump the embedded CUDA kernels to the
indicated file. Useful if you want to see what is actually being executed.

--dump-ptx=FILE Don’t run the program, but instead dump the PTX-compiled version of the em-
bedded kernels to the indicated file.

--load-cuda=FILE Instead of using the embedded CUDA kernels, load them from the indicated file.

--load-ptx=FILE Load PTX code from the indicated file.

-n, --no-print-result Do not print the program result.

--nvrtc-option=OPT Add an additional build option to the string passed to NVRTC. Refer to the CUDA
documentation for which options are supported. Be careful - some options can
easily result in invalid results.

--param=ASSIGNMENT Set a tuning parameter to the given value. ASSIGNMENT must be of the form
NAME=INT Use --print-params to see which names are available.

--print-params Print all tuning parameters that can be set with --param or --tuning.

--tuning=FILE Read size=value assignments from the given file.

18.6 ENVIRONMENT

If run without --library, futhark cuda will invoke a C compiler to compile the generated C program into a binary.
This only works if the C compiler can find the necessary CUDA libraries. On most systems, CUDA is installed in
/usr/local/cuda, which is usually not part of the default compiler search path. You may need to set the following
environment variables before running futhark cuda:

LIBRARY_PATH=/usr/local/cuda/lib64
LD_LIBRARY_PATH=/usr/local/cuda/lib64/
CPATH=/usr/local/cuda/include

At runtime the generated program must be able to find the CUDA installation directory, which is normally located at
/usr/local/cuda. If you have CUDA installed elsewhere, set any of the CUDA_HOME, CUDA_ROOT, or CUDA_PATH
environment variables to the proper directory.

118 Chapter 18. futhark-cuda

Futhark User’s Guide, Release 0.24.3

18.7 SEE ALSO

futhark-opencl

18.7. SEE ALSO 119

Futhark User’s Guide, Release 0.24.3

120 Chapter 18. futhark-cuda

CHAPTER

NINETEEN

FUTHARK-DATASET

19.1 SYNOPSIS

futhark dataset [options. . .]

19.2 DESCRIPTION

Generate random values in Futhark syntax, which can be useful when generating input datasets for program testing.
All Futhark primitive types are supported. Tuples are not supported. Arrays of specific (non-random) sizes can be
generated. You can specify maximum and minimum bounds for values, as well as the random seed used when generating
the data. The generated values are written to standard output.

If no -g/--generate options are passed, values are read from standard input, and printed to standard output in the
indicated format. The input format (whether textual or binary) is automatically detected.

Returns a nonzero exit code if it fails to write the full output.

19.3 OPTIONS

-b, --binary Output data in binary Futhark format (must precede –generate).

-g type, --generate type Generate a value of the indicated type, e.g. -g i32 or -g [10]f32.

The type may also be a value, in which case that literal value is generated.

-s int Set the seed used for the RNG. 1 by default.

--T-bounds=<min:max> Set inclusive lower and upper bounds on generated values of type T. T is any
primitive type, e.g. i32 or f32. The bounds apply to any following uses of the
-g option.

You can alter the output format using the following flags. To use them, add them before data generation (–generate):

--text Output data in text format (must precede –generate). Default.

-t, --type Output the types of values (textually) instead of the values themselves. Mostly
useful when reading values on stdin.

121

Futhark User’s Guide, Release 0.24.3

19.4 EXAMPLES

Generate a 4 by 2 integer matrix:

futhark dataset -g [4][2]i32

Generate an array of floating-point numbers and an array of indices into that array:

futhark dataset -g [10]f32 --i64-bounds=0:9 -g [100]i64

To generate binary data, the --binary must come before the --generate:

futhark dataset --binary --generate=[42]i32

Create a binary data file from a data file:

futhark dataset --binary < any_data > binary_data

Determine the types of values contained in a data file:

futhark dataset -t < any_data

19.5 SEE ALSO

futhark-test, futhark-bench

122 Chapter 19. futhark-dataset

CHAPTER

TWENTY

FUTHARK-DOC

20.1 SYNOPSIS

futhark doc [options. . .] dir

20.2 DESCRIPTION

futhark doc generates HTML-formatted documentation from Futhark code. One HTML file will be created for each
.fut file in the given directory, as well as any file reachable through import expressions. The given Futhark code will
be considered as one cohesive whole, and must be type-correct.

Futhark definitions may be documented by prefixing them with a block of line comments starting with -- | (see
example below). Simple Markdown syntax is supported within these comments. A link to another identifier is possible
with the notation `name`@namespace, where namespace must be either term, type, or mtype (module names are in
the term namespace). A file may contain a leading documentation comment, which will be considered the file abstract.

futhark doc will ignore any file whose documentation comment consists solely of the word “ignore”. This is useful
for files that contain tests, or are otherwise not relevant to the reader of the documentation.

20.3 OPTIONS

-h Print help text to standard output and exit.

-o outdir The name of the directory that will contain the generated documentation. This
option is mandatory.

-v, --verbose Print status messages to stderr while running.

-V Print version information on standard output and exit.

123

Futhark User’s Guide, Release 0.24.3

20.4 EXAMPLES

-- | Gratuitous re-implementation of `map`@term.
--
-- Does exactly the same.
let mymap = ...

20.5 SEE ALSO

futhark-test, futhark-bench

124 Chapter 20. futhark-doc

CHAPTER

TWENTYONE

FUTHARK-LITERATE

21.1 SYNOPSIS

futhark literate [options. . .] program

21.2 DESCRIPTION

The command futhark literate foo.fut will compile the given program and then generate a Markdown file
foo.md that contains a prettyprinted form of the program. This is useful for demonstrating programming techniques.

• Top-level comments that start with a line comment marker (--) and a space in the next column will be turned
into ordinary text in the Markdown file.

• Ordinary top-level definitions will be enclosed in Markdown code blocks.

• Any directives will be executed and replaced with their output. See below.

Warning: Do not run untrusted programs. See SAFETY below.

Image directives and builtin functions shell out to convert (from ImageMagick). Video and audio generation uses
ffmpeg.

For an input file foo.fut, all generated files will be in a directory named foo-img. A file parameter passed to a
directive may not contain a directory component or spaces.

21.3 OPTIONS

--backend=name The backend used when compiling Futhark programs (without leading futhark,
e.g. just opencl). Defaults to c.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark literate itself.

--output=FILE Override the default output file. The image directory will be set to the provided
FILE with its extension stripped and -img/ appended.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

futhark literate prog.fut --backend=opencl --pass-option=-
→˓dHawaii

125

Futhark User’s Guide, Release 0.24.3

--pass-compiler-option=opt Pass an extra option to the compiler when compiling the programs.

--skip-compilation Do not run the compiler, and instead assume that the program has already been
compiled. Use with caution.

--stop-on-error Terminate immediately without producing an output file if a directive fails. Oth-
erwise a file will still be produced, and failing directives will be followed by an
error message.

-v, --verbose Print verbose information on stderr about directives as they are executing. This is
also needed to see #[trace] output.

21.4 DIRECTIVES

A directive is a way to show the result of running a function. Depending on the directive, this can be as simple as
printing the textual representation of the result, or as complex as running an external plotting program and referencing
a generated image.

Any directives that produce images for a program foo.fut will place them in the directory foo-img/. If this directory
already exists, it will be deleted.

A directive is a line starting with -- >, which must follow an empty line. Arguments to the directive follow on the
remainder of the line. Any expression arguments are given in a very restricted subset of Futhark called FutharkScript
(see below).

Some directives take mandatory or optional parameters. These are entered after a semicolon and a linebreak.

The following directives are supported:

• > e

Shows the result of executing the FutharkScript expression e, which can have any (transparent) type.

• > :video e[; parameters...]

Creates a video from e. The optional parameters are lines of the form key: value:

– repeat: <true|false>

– fps: <int>

– format: <webm|gif>

– file: <name>. Make sure to provide a proper extension.

e must be one of the following:

– A 3D array where the 2D elements is of a type acceptable to :img, and the outermost dimension is the
number of frames.

– A triple (s -> (img,s), s, i64), for some types s and img, where img is an array acceptable to :img.
This means not all frames have to be held in memory at once.

• > :brief <directive>

The same as the given directive (which must not start with another >), but suppress parameters when printing it.

• > :covert <directive>

The same as the given directive (which must not start with another >), but do not show the directive itself in the
output, only its result.

126 Chapter 21. futhark-literate

Futhark User’s Guide, Release 0.24.3

• > :img e[; parameters...]

Visualises e. The optional parameters are lines of the form key: value:

– file: NAME. Make sure to use a proper extension.

The expression e must have one of the following types:

– [][]i32 and [][]u32

Interpreted as ARGB pixel values.

– [][]f32 and [][]f64

Interpreted as greyscale. Values should be between 0 and 1, with 0 being black and 1 being white.

– [][]u8

Interpreted as greyscale. 0 is black and 255 is white.

– [][]bool

Interpreted as black and white. false is black and true is white.

• > :plot2d e[; size=(height,width)]

Shows a plot generated with gnuplot of e, which must be an expression of type ([]t, []t), where t is some
numeric type. The two arrays must have the same length and are interpreted as x and y values, respectively.

The expression may also be a record expression (not merely the name of a Futhark variable of record type), where
each field will be plotted separately and must have the type mentioned above.

• > :gnuplot e; script...

Similar to plot2d, except that it uses the provided Gnuplot script. The e argument must be a record whose
fields are tuples of one-dimensional arrays, and the data will be available in temporary files whose names are in
variables named after the record fields. Each file will contain a column of data for each array in the corresponding
tuple.

Use set term png size width,height to change the size to width by height pixels.

• > :audio e[; parameters...]

Creates a sound-file from e. The optional parameters are lines of the form key:value:

– sampling_frequency: <int>

The sampling frequency (in Hz) of the input. Defaults to 44100.

– codec: <name>

The codec of the output. Defaults to wav. Other common options include mp3, flac, ogg and opus.

The expression e must have one of the following types:

– []i8 and []u8

Interpreted as PCM signed/unsigned 8-bit audio.

– []i16 and []u16

Interpreted as PCM signed/unsigned 16-bit audio.

– []i32 and []u32

Interpreted as PCM signed/unsigned 32-bit audio.

21.4. DIRECTIVES 127

Futhark User’s Guide, Release 0.24.3

– []f32 and []f64

Interpreted as PCM signed/unsigned 32/64 bit floating-point audio. Should only contain values between
-1.0 and 1.0.

For each type of input, it is also possible to give expressions with a two-dimensional type instead, e.g. [][]f32.
These expressions are interpreted as an array of channels, making it possible to do stereo audio by returning
e.g. [2][]f32. For stereo output, the first row is the left channel and the second row is the right channel. This
functionality uses the amerge filter from ffmpeg, so consult the documentation there for additional information.

21.5 FUTHARKSCRIPT

Only an extremely limited subset of Futhark is supported:

script_exp ::= fun script_exp*
| "(" script_exp ")"
| "(" script_exp ("," script_exp)+ ")"
| "[" script_exp ("," script_exp)+ "]"
| "empty" "(" ("[" decimal "]")+ script_type ")"
| "{" "}"
| "{" (id = script_exp) ("," id = script_exp)* "}"
| "let" script_pat "=" script_exp "in" script_exp
| literal

script_pat ::= id | "(" id ("," id) ")"
script_fun ::= id | "$" id
script_type ::= int_type | float_type | "bool"

Note that empty arrays must be written using the empty(t) notation, e.g. empty([0]i32).

Function applications are either of Futhark functions or builtin functions. The latter are prefixed with $ and are magical
(usually impure) functions that could not possibly be implemented in Futhark. The following builtins are supported:

• $loadimg "file" reads an image from the given file and returns it as a row-major [][]u32 array with each
pixel encoded as ARGB.

• $loaddata "file" reads a dataset from the given file. When the file contains a singular value, it is returned
as value. Otherwise, a tuple of values is returned, which should be destructured before use. For example: let
(a, b) = $loaddata "foo.in" in bar a b.

• $loadaudio "file" reads audio from the given file and returns it as a [][]f64, where each row corresponds
to a channel of the original soundfile. Most common audio-formats are supported, including mp3, ogg, wav, flac
and opus.

21.6 SAFETY

Some directives (e.g. :gnuplot) can run arbitrary shell commands. Other directives or builtin functions can read
or write arbitrary files. Running an untrusted literate Futhark program is as dangerous as running a shell script you
downloaded off the Internet. Before running a program from an unknown source, you should always give it a quick
read to see if anything looks fishy.

128 Chapter 21. futhark-literate

Futhark User’s Guide, Release 0.24.3

21.7 BUGS

FutharkScript expressions can only refer to names defined in the file passed to futhark literate, not any names in
imported files.

21.8 SEE ALSO

futhark-test, futhark-bench

21.7. BUGS 129

Futhark User’s Guide, Release 0.24.3

130 Chapter 21. futhark-literate

CHAPTER

TWENTYTWO

FUTHARK-MULTICORE

22.1 SYNOPSIS

futhark multicore [options. . .] <program.fut>

22.2 DESCRIPTION

futhark multicore translates a Futhark program to multithreaded C code, and either compiles that C code with a
C compiler to an executable binary program, or produces a .h and .c file that can be linked with other code. The
standard Futhark optimisation pipeline is used.

The resulting program will read the arguments to the entry point (main by default) from standard input and print its
return value on standard output. The arguments are read and printed in Futhark syntax.

22.3 OPTIONS

Accepts the same options as futhark-c.

22.4 ENVIRONMENT VARIABLES

CC

The C compiler used to compile the program. Defaults to cc if unset.

CFLAGS

Space-separated list of options passed to the C compiler. Defaults to -O3 -std=c99 -pthread if unset.

131

Futhark User’s Guide, Release 0.24.3

22.5 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-c. The following additional options are
accepted.

-P, --profile Collect and report various bits of profiling information.

--num-threads=INT Use this many physical threads.

22.6 BUGS

Currently works only on Unix-like systems because of a dependency on pthreads. Adding support for Windows would
likely not be difficult.

22.7 SEE ALSO

futhark-c, futhark-test

132 Chapter 22. futhark-multicore

CHAPTER

TWENTYTHREE

FUTHARK-ISPC

23.1 SYNOPSIS

futhark ispc [options. . .] <program.fut>

23.2 DESCRIPTION

futhark ispc translates a Futhark program to a combination of C and ISPC code, with ISPC used for parallel loops.
It otherwise operates similarly to futhark-multicore. You need to have ispc on your PATH.

23.3 OPTIONS

Accepts the same options as futhark-multicore.

23.4 ENVIRONMENT VARIABLES

CC

The C compiler used to compile the program. Defaults to cc if unset.

CFLAGS

Space-separated list of options passed to the C compiler. Defaults to -O3 -std=c99 -pthread if unset.

ISPCFLAGS

Space-separated list of options passed to ispc. Defaults to -O3 --woff if unset.

23.5 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-multicore.

133

Futhark User’s Guide, Release 0.24.3

23.6 BUGS

Currently works only on Unix-like systems because of a dependency on pthreads. Adding support for Windows would
likely not be difficult.

23.7 SEE ALSO

futhark-multicore, futhark-test

134 Chapter 23. futhark-ispc

CHAPTER

TWENTYFOUR

FUTHARK-OPENCL

24.1 SYNOPSIS

futhark opencl [options. . .] <program.fut>

24.2 DESCRIPTION

futhark opencl translates a Futhark program to C code invoking OpenCL kernels, and either compiles that C code
with a C compiler to an executable binary program, or produces a .h and .c file that can be linked with other code.
The standard Futhark optimisation pipeline is used.

futhark opencl uses -lOpenCL to link (-framework OpenCL on macOS). If using --library, you will need to
do the same when linking the final binary.

24.3 OPTIONS

Accepts the same options as futhark-c.

24.4 ENVIRONMENT VARIABLES

CC

The C compiler used to compile the program. Defaults to cc if unset.

CFLAGS

Space-separated list of options passed to the C compiler. Defaults to -O -std=c99 if unset.

135

Futhark User’s Guide, Release 0.24.3

24.5 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-c. For the -t option, The time taken to
perform device setup or teardown, including writing the input or reading the result, is not included in the measurement.
In particular, this means that timing starts after all kernels have been compiled and data has been copied to the device
buffers but before setting any kernel arguments. Timing stops after the kernels are done running, but before data has
been read from the buffers or the buffers have been released.

The following additional options are accepted.

-h, --help Print help text to standard output and exit.

--build-option=OPT Add an additional build option to the string passed to clBuildProgram(). Refer
to the OpenCL documentation for which options are supported. Be careful - some
options can easily result in invalid results.

--default-group-size=INT The default size of OpenCL workgroups that are launched. Capped to the
hardware limit if necessary.

--default-num-groups=INT The default number of OpenCL workgroups that are launched.

--default-threshold=INT The default parallelism threshold used for comparisons when selecting be-
tween code versions generated by incremental flattening. Intuitively, the amount
of parallelism needed to saturate the GPU.

--default-tile-size=INT The default tile size used when performing two-dimensional tiling (the work-
group size will be the square of the tile size).

-d, --device=NAME Use the first OpenCL device whose name contains the given string. The special
string #k, where k is an integer, can be used to pick the k-th device, numbered from
zero. If used in conjunction with -p, only the devices from matching platforms
are considered.

--dump-opencl=FILE Don’t run the program, but instead dump the embedded OpenCL program to
the indicated file. Useful if you want to see what is actually being executed.

--dump-opencl-binary=FILE Don’t run the program, but instead dump the compiled version of the
embedded OpenCL program to the indicated file. On NVIDIA platforms, this will
be PTX code.

--load-opencl=FILE Instead of using the embedded OpenCL program, load it from the indicated file.

--load-opencl-binary=FILE Load an OpenCL binary from the indicated file.

-n, --no-print-result Do not print the program result.

-p, --platform=NAME Use the first OpenCL platform whose name contains the given string. The
special string #k, where k is an integer, can be used to pick the k-th platform,
numbered from zero.

-P, --profile Gather profiling data while executing and print out a summary at the end. When
-r is used, only the last run will be profiled. Implied by -D.

--param=ASSIGNMENT Set a tuning parameter to the given value. ASSIGNMENT must be of the form
NAME=INT Use --print-params to see which names are available.

--print-params Print all tuning parameters that can be set with --param or --tuning.

--tuning=FILE Read size=value assignments from the given file.

--list-devices List all OpenCL devices and platforms available on the system.

136 Chapter 24. futhark-opencl

Futhark User’s Guide, Release 0.24.3

24.6 SEE ALSO

futhark-test, futhark-cuda, futhark-c

24.6. SEE ALSO 137

Futhark User’s Guide, Release 0.24.3

138 Chapter 24. futhark-opencl

CHAPTER

TWENTYFIVE

FUTHARK-PKG

25.1 SYNOPSIS

futhark pkg add PKGPATH [X.Y.Z]

futhark pkg check

futhark pkg init PKGPATH

futhark pkg fmt

futhark pkg remove PKGPATH

futhark pkg sync

futhark pkg upgrade

futhark pkg versions

25.2 DESCRIPTION

This tool is used to modify the package manifest (futhark.pkg) and download the required packages it describes.
futhark pkg is not a build system; you will still need to compile your Futhark code with the usual compilers. The only
purpose of futhark pkg is to download code (and perform other package management utility tasks). This manpage
is not a general introduction to package management in Futhark; see the User’s Guide for that.

The futhark pkg subcommands will modify only two locations in the file system (relative to the current working
directory): the futhark.pkg file, and the contents of lib/. When modifying lib/, futhark pkg constructs the
new version in lib~new/ and backs up the old version in lib~old. If futhark pkg should fail for any reason, you
can recover the old state by moving lib~old back. These temporary directories are erased if futhark pkg finishes
without errors.

The futhark pkg sync and futhark pkg init subcommands are the only ones that actually modifies lib/; the
others modify only futhark.pkg and require you to manually run futhark pkg sync afterwards.

Most commands take a -v/--verbose option that makes futhark pkg write running diagnostics to stderr.

Packages must correspond to Git repositories, and all interactions are done by invoking git.

139

Futhark User’s Guide, Release 0.24.3

25.3 COMMANDS

25.3.1 futhark pkg add PKGPATH [X.Y.Z]

Add the specified package of the given minimum version as a requirement to futhark.pkg. If no version is provided,
the newest one is used. If the package is already required in futhark.pkg, the new version requirement will replace
the old one.

Note that adding a package does not automatically download it. Run futhark pkg sync to do that.

25.3.2 futhark pkg check

Verify that the futhark.pkg is valid, that all required packages are available in the indicated versions. This command
does not check that these versions contain well-formed code. If a package path is defined in futhark.pkg, also checks
that .fut files are located at the expected location in the file system.

25.3.3 futhark pkg init PKGPATH

Create a new futhark.pkg defining a package with the given package path, and initially no requirements.

25.3.4 futhark pkg fmt

Reformat the futhark.pkg file, while retaining any comments.

25.3.5 futhark pkg remove PKGPATH

Remove a package from futhark.pkg. Does not remove it from the lib/ directory.

25.3.6 futhark pkg sync

Populate the lib/ directory with the packages listed in futhark.pkg. Warning: this will delete everything in lib/
that does not relate to a file listed in futhark.pkg, as well as any local modifications.

25.3.7 futhark pkg upgrade

Upgrade all package requirements in futhark.pkg to the newest available versions.

25.3.8 futhark pkg versions PKGPATH

Print all available versions for the given package path.

140 Chapter 25. futhark-pkg

Futhark User’s Guide, Release 0.24.3

25.4 COMMIT VERSIONS

It is possible to use futhark pkgwith packages that have not yet made proper releases. This is done via pseudoversions
of the form 0.0.0-yyyymmddhhmmss+commitid. The timestamp is not verified against the actual commit. The
timestamp ensures that newer commits take precedence if multiple packages depend on a commit version for the same
package. If futhark pkg add is given a package with no releases, the most recent commit will be used. In this case,
the timestamp is merely set to the current time.

Commit versions are awkward and fragile, and should not be relied upon. Issue proper releases (even experimental 0.x
version) as soon as feasible. Released versions also always take precedence over commit versions, since any version
number will be greater than 0.0.0.

25.5 EXAMPLES

Create a new package that will be hosted at https://github.com/sturluson/edda:

futhark pkg init github.com/sturluson/edda

Add a package dependency:

futhark pkg add github.com/sturluson/hattatal

Download the dependencies:

futhark pkg sync

And then you’re ready to start hacking! (Except that these packages do not actually exist.)

25.6 BUGS

Since the lib/ directory is populated with transitive dependencies as well, it is possible for a package to depend
unwittingly on one of the dependencies of its dependencies, without the futhark.pkg file reflecting this.

There is no caching of package metadata between invocations, so the network traffic can be rather heavy.

25.7 SEE ALSO

futhark-test, futhark-doc

25.4. COMMIT VERSIONS 141

Futhark User’s Guide, Release 0.24.3

142 Chapter 25. futhark-pkg

CHAPTER

TWENTYSIX

FUTHARK-PYOPENCL

26.1 SYNOPSIS

futhark pyopencl [options. . .] infile

26.2 DESCRIPTION

futhark pyopencl translates a Futhark program to Python code invoking OpenCL kernels, which depends on Numpy
and PyOpenCL. By default, the program uses the first device of the first OpenCL platform - this can be changed by
passing -p and -d options to the generated program (not to futhark pyopencl itself).

The resulting program will otherwise behave exactly as one compiled with futhark py. While the sequential host-
level code is pure Python and just as slow as in futhark py, parallel sections will have been compiled to OpenCL,
and runs just as fast as when using futhark opencl. The kernel launch overhead is significantly higher, however, so
a good rule of thumb when using futhark pyopencl is to aim for having fewer but longer-lasting parallel sections.

The generated code requires at least PyOpenCL version 2015.2.

26.3 OPTIONS

Accepts the same options as futhark-opencl.

26.4 SEE ALSO

futhark-python, futhark-opencl

143

Futhark User’s Guide, Release 0.24.3

144 Chapter 26. futhark-pyopencl

CHAPTER

TWENTYSEVEN

FUTHARK-PYTHON

27.1 SYNOPSIS

futhark python [options. . .] infile

27.2 DESCRIPTION

futhark python translates a Futhark program to sequential Python code, which depends on Numpy.

The resulting program will read the arguments to the main function from standard input and print its return value on
standard output. The arguments are read and printed in Futhark syntax.

The generated code is very slow, likely too slow to be useful. It is more interesting to use this command’s big brother,
futhark-pyopencl.

27.3 OPTIONS

Accepts the same options as futhark-c.

27.4 SEE ALSO

futhark-pyopencl

145

Futhark User’s Guide, Release 0.24.3

146 Chapter 27. futhark-python

CHAPTER

TWENTYEIGHT

FUTHARK-REPL

28.1 SYNOPSIS

futhark repl [program.fut]

28.2 DESCRIPTION

Start an interactive Futhark session. This will let you interactively enter expressions and declarations which are then
immediately interpreted. If the entered line can be either a declaration or an expression, it is assumed to be a declaration.

Futhark source files can be loaded using the :load command. This will erase any interactively entered definitions.
Use the :help command to see a list of commands. All commands are prefixed with a colon.

futhark repl uses the Futhark interpreter, which grants access to the #[trace] and #[break] attributes. See
futhark-run for a description.

28.3 OPTIONS

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

28.4 SEE ALSO

futhark-run, futhark-test

147

Futhark User’s Guide, Release 0.24.3

148 Chapter 28. futhark-repl

CHAPTER

TWENTYNINE

FUTHARK-RUN

29.1 SYNOPSIS

futhark run [options. . .] <program.fut>

29.2 DESCRIPTION

Execute the given program by evaluating an entry point (main by default) with arguments read from standard input,
and write the results on standard output.

futhark run is very slow, and in practice only useful for testing, teaching, and experimenting with the language. The
#[trace] and #[break] attributes are fully supported in the interpreter. Tracing prints values to stdout in contrast to
compiled code, which prints to stderr.

29.3 OPTIONS

-e NAME Run the given entry point instead of main.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

-w, --no-warnings Disable interpreter warnings.

29.4 SEE ALSO

futhark-repl, futhark-test

149

Futhark User’s Guide, Release 0.24.3

150 Chapter 29. futhark-run

CHAPTER

THIRTY

FUTHARK-TEST

30.1 SYNOPSIS

futhark test [options. . .] infiles. . .

30.2 DESCRIPTION

Test Futhark programs based on input/output datasets. All contained .fut files within a given directory are considered.
By default, tests are carried out with compiled code. This can be changed with the -i option.

A Futhark test program is an ordinary Futhark program, with at least one test block describing input/output test cases
and possibly other options. The last line must end in a newline. A test block consists of commented-out text with the
following overall format:

description
==
cases...

The description is an arbitrary (and possibly multiline) human-readable explanation of the test program. It is sepa-
rated from the test cases by a line containing just ==. Any comment starting at the beginning of the line, and containing
a line consisting of just ==, will be considered a test block. The format of a test case is as follows:

[tags { tags... }]
[entry: names...]
["name..."] [compiled|nobench|random|script] input ({ values... } | @ filename)
output { values... } | auto output | error: regex

If a test case begins with a quoted string, that string is reported as the dataset name, including in the JSON file produced
by futhark-bench. If no name is provided, one is automatically generated. The name must be unique across all test cases.

If compiled is present before the input keyword, this test case will never be passed to the interpreter. This is useful
for test cases that are annoyingly slow to interpret. The nobench keyword is for data sets that are too small to be worth
benchmarking, and only has meaning to futhark-bench.

If input is preceded by random, the text between the curly braces must consist of a sequence of Futhark types, including
sizes in the case of arrays. When futhark test is run, a file located in a data/ subdirectory, containing values of the
indicated types and shapes is, automatically constructed with futhark-dataset. Apart from sizes, integer constants
(with or without type suffix), and floating-point constants (always with type suffix) are also permitted.

If input is preceded by script, the text between the curly braces is interpreted as a FutharkScript expression (see
futhark-literate), which is executed to generate the input. It must use only functions explicitly declared as entry points.

151

Futhark User’s Guide, Release 0.24.3

If the expression produces an n-element tuple, it will be unpacked and its components passed as n distinct arguments
to the test function. The only builtin function supported is $loaddata.

If input is followed by an @ and a file name (which must not contain any whitespace) instead of curly braces, values
or FutharkScript expression will be read from the indicated file. This is recommended for large data sets. This notation
cannot be used with random input.

After the input block, the expected result of the test case is written as either output followed by another block of
values, or an expected run-time error, in which a regular expression can be used to specify the exact error message
expected. If no regular expression is given, any error message is accepted. If neither output nor error is given, the
program will be expected to execute succesfully, but its output will not be validated.

If output is preceded by auto (as in auto output), the expected values are automatically generated by compiling
the program with futhark-c and recording its result for the given input (which must not fail). This is usually only
useful for testing or benchmarking alternative compilers, and not for testing the correctness of Futhark programs. This
currently does not work for script inputs.

Alternatively, instead of input-output pairs, the test cases can simply be a description of an expected compile time type
error:

error: regex

This is used to test the type checker.

Tuple syntax is not supported when specifying input and output values. Instead, you can write an N-tuple as its con-
stituent N values. Beware of syntax errors in the values - the errors reported by futhark test are very poor.

An optional tags specification is permitted in the first test block. This section can contain arbitrary tags that classify
the benchmark:

tags { names... }

Tag are sequences of alphanumeric characters, dashes, and underscores, with each tag seperated by whitespace. Any
program with the disable tag is ignored by futhark test.

Another optional directive is entry, which specifies the entry point to be used for testing. This is useful for writing
programs that test libraries with multiple entry points. Multiple entry points can be specified on the same line by
separating them with space, and they will all be tested with the same input/output pairs. The entry directive affects
subsequent input-output pairs in the same comment block, and may only be present immediately preceding these input-
output pairs. If no entry is given, main is assumed. See below for an example.

For many usage examples, see the tests directory in the Futhark source directory. A simple example can be found in
EXAMPLES below.

30.3 OPTIONS

--backend=program The backend used when compiling Futhark programs (without leading futhark,
e.g. just opencl).

--cache-extension=EXTENSION For a program foo.fut, pass --cache-file foo.fut.
EXTENSION. By default, --cache-file is not passed.

-c Only run compiled code - do not run the interpreter. This is the default.

-C Compile the programs, but do not run them.

--concurrency=NUM The number of tests to run concurrently. Defaults to the number of (hyper-)cores
available.

152 Chapter 30. futhark-test

Futhark User’s Guide, Release 0.24.3

--exclude=tag Do not run test cases that contain the given tag. Cases marked with “disable” are
ignored by default, as are cases marked “no_foo”, where foo is the backend used.

-i Test with the interpreter.

-t Type-check the programs, but do not run them.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark test itself.

--no-terminal Print each result on a line by itself, without line buffering.

--no-tuning Do not look for tuning files.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

futhark test prog.fut --backend=opencl --pass-option=-dHawaii

--pass-compiler-option=opt Pass an extra option to the compiler when compiling the programs.

--runner=program If set to a non-empty string, compiled programs are not run directly, but instead
the indicated program is run with its first argument being the path to the compiled
Futhark program. This is useful for compilation targets that cannot be executed
directly (as with futhark-pyopencl on some platforms), or when you wish to run
the program on a remote machine.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which is
suffixed to the name of the program. For example, given --tuning=tuning (the
default), the program foo.fut will be passed the tuning file foo.fut.tuning if
it exists.

30.4 ENVIRONMENT VARIABLES

TMPDIR

Directory used for temporary files such as gunzipped datasets and log files.

30.5 EXAMPLES

The following program tests simple indexing and bounds checking:

-- Test simple indexing of an array.
-- ==
-- tags { firsttag secondtag }
-- input { [4,3,2,1] 1i64 }
-- output { 3 }
-- input { [4,3,2,1] 5i64 }
-- error: Error*

let main (a: []i32) (i: i64): i32 =
a[i]

The following program contains two entry points, both of which are tested:

30.4. ENVIRONMENT VARIABLES 153

Futhark User’s Guide, Release 0.24.3

let add (x: i32) (y: i32): i32 = x + y

-- Test the add1 function.
-- ==
-- entry: add1
-- input { 1 } output { 2 }

entry add1 (x: i32): i32 = add x 1

-- Test the sub1 function.
-- ==
-- entry: sub1
-- input { 1 } output { 0 }

entry sub1 (x: i32): i32 = add x (-1)

The following program contains an entry point that is tested with randomly generated data:

-- ==
-- random input { [100]i32 [100]i32 } auto output
-- random input { [1000]i32 [1000]i32 } auto output

let main xs ys = i32.product (map2 (*) xs ys)

30.6 SEE ALSO

futhark-bench, futhark-repl

154 Chapter 30. futhark-test

CHAPTER

THIRTYONE

FUTHARK-WASM

31.1 SYNOPSIS

futhark wasm [options. . .] <program.fut>

31.2 DESCRIPTION

futhark wasm translates a Futhark program to sequential WebAssembly code by first generating C as futhark c, and
then using Emscripten (emcc). This produces a .js file that allows the compiled code to be invoked from JavaScript.
Executables implement the Futhark server protocol and can be run with Node.js.

31.3 OPTIONS

Accepts the same options as futhark-c.

31.4 ENVIRONMENT VARIABLES

CFLAGS

Space-separated list of options passed to emcc. Defaults to -O3 -std=c99 if unset.

EMCFLAGS

Space-separated list of options passed to emcc.

31.5 EXECUTABLE OPTIONS

The following options are accepted by executables generated by futhark wasm.

-h, --help Print help text to standard output and exit.

-D, --debugging Perform possibly expensive internal correctness checks and verbose logging. Im-
plies -L.

-L, --log Print various low-overhead logging information to stderr while running.

155

Futhark User’s Guide, Release 0.24.3

31.6 SEE ALSO

futhark-c, futhark-wasm-multicore

156 Chapter 31. futhark-wasm

CHAPTER

THIRTYTWO

FUTHARK-WASM-MULTICORE

32.1 SYNOPSIS

futhark wasm-multicore [options. . .] <program.fut>

32.2 DESCRIPTION

futhark wasm-multicore translates a Futhark program to multi-threaded WebAssembly code by first generating C
as futhark c, and then using Emscripten (emcc). This produces a .js file that allows the compiled code to be invoked
from JavaScript. Executables implement the Futhark server protocol and can be run with Node.js.

32.3 OPTIONS

Accepts the same options as futhark-c.

32.4 ENVIRONMENT VARIABLES

Respects the same environment variables as futhark-wasm.

32.5 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-wasm.

32.6 SEE ALSO

futhark-c, futhark-wasm

157

Futhark User’s Guide, Release 0.24.3

158 Chapter 32. futhark-wasm-multicore

INDEX

A
Abstract type, 99
Aliases, 99
Aliasing, 99
Anonymous size, 99
Attribute, 99

C
Coercion, 99
Compiler backend, 99
Compiler frontend, 99
Compiler pipeline, 99
Constructive use, 99
Consumption, 100

D
Data parallelism, 100
Defunctionalisation, 100
Defunctorisation, 100

E
Elaboration, 100
Existential size, 100

F
Functor, 100
FUTHARK_BACKEND_foo (C macro), 45
futhark_context (C struct), 47
futhark_context_clear_caches (C function), 47
futhark_context_config (C struct), 46
futhark_context_config_add_build_option (C

function), 51
futhark_context_config_add_nvrtc_option (C

function), 52
futhark_context_config_dump_binary_to (C func-

tion), 51
futhark_context_config_dump_program_to (C

function), 51
futhark_context_config_dump_ptx_to (C func-

tion), 52
futhark_context_config_free (C function), 46

futhark_context_config_load_binary_from (C
function), 51

futhark_context_config_load_program_from (C
function), 51

futhark_context_config_load_ptx_from (C func-
tion), 52

futhark_context_config_new (C function), 46
futhark_context_config_select_device_interactively

(C function), 51
futhark_context_config_set_cache_file (C func-

tion), 46
futhark_context_config_set_command_queue (C

function), 51
futhark_context_config_set_debugging (C func-

tion), 46
futhark_context_config_set_default_group_size

(C function), 51
futhark_context_config_set_default_num_groups

(C function), 51
futhark_context_config_set_default_tile_size

(C function), 51
futhark_context_config_set_device (C function),

50
futhark_context_config_set_logging (C func-

tion), 46
futhark_context_config_set_num_threads (C

function), 52
futhark_context_config_set_platform (C func-

tion), 51
futhark_context_config_set_profiling (C func-

tion), 46
futhark_context_config_set_tuning_param (C

function), 46
futhark_context_free (C function), 47
futhark_context_get_command_queue (C function),

51
futhark_context_get_error (C function), 47
futhark_context_new (C function), 47
futhark_context_pause_profiling (C function), 47
futhark_context_report (C function), 47
futhark_context_set_logging_file (C function),

47

159

Futhark User’s Guide, Release 0.24.3

futhark_context_sync (C function), 47
futhark_context_unpause_profiling (C function),

47
futhark_entry_sum (C function), 50
futhark_free_i32_1d (C function), 48
futhark_free_opaque_foo (C function), 49
futhark_get_tuning_param_class (C function), 46
futhark_get_tuning_param_count (C function), 46
futhark_get_tuning_param_name (C function), 46
futhark_i32_1d (C struct), 48
futhark_new_i32_1d (C function), 48
futhark_new_opaque_t (C function), 49
futhark_new_raw_i32_1d (C function), 48
futhark_opaque_foo (C struct), 48
FUTHARK_OUT_OF_MEMORY (C macro), 45
FUTHARK_PROGRAM_ERROR (C macro), 45
futhark_project_opaque_t_bar (C function), 50
futhark_project_opaque_t_foo (C function), 50
futhark_restore_opaque_foo (C function), 49
futhark_shape_i32_1d (C function), 48
futhark_store_opaque_foo (C function), 49
FUTHARK_SUCCESS (C macro), 45
futhark_values_i32_1d (C function), 48
FutharkArray.free() (FutharkArray method), 58
FutharkArray.shape() (FutharkArray method), 58
FutharkArray.toArray() (FutharkArray method), 58
FutharkArray.toTypedArray() (FutharkArray

method), 58
FutharkContext() (class), 58
FutharkContext.<entry_point_name>() (Futhark-

Context method), 59
FutharkContext.free() (FutharkContext method), 58
FutharkContext.new_i32_1d() (FutharkContext

method), 58
FutharkContext.new_i32_1d_from_jsarray()

(FutharkContext method), 58
FutharkOpaque.free() (FutharkOpaque method), 59

G
GPU backend, 100

H
Higher-ranked type, 100

I
In-place updates, 100
Invariant, 100
Irregular, 100
Irregular array, 100
Irregular memory allocation, 100
Irregular nested data parallelism, 101

L
Lifted type, 101

M
Module, 101
Module ascription, 101
Module expression, 101
Module type, 101
Module type expression, 101
Monomorphisation, 101

N
Nested data parallelism, 101
newFutharkContext() (built-in function), 58

P
Parallel width, 101
Parametric module, 101
Polymorphic, 102
Polymorphic function, 102
Polymorphism, 102

R
Recursion, 102
Regular nested data parallelism, 102

S
Second Order Array Combinator, 102
Size, 102
Size argument, 102
Size parameter, 102
Size types, 102
Size-dependent types, 102
Size-lifted type, 102
SOAC, 102

T
Type, 102
Type abbreviation, 102
Type argument, 102
Type constructor, 102
Type expression, 102
Type parameter, 103

U
Uniqueness types, 103
Unknown size, 103

V
Value, 103
Variant, 103

160 Index

	Installation
	Dependencies
	Compiling from source
	Installing from a precompiled snapshot
	Installing Futhark on Linux
	Using OpenCL or CUDA

	Installing Futhark on macOS
	Setting up Futhark on Windows
	Futhark with Nix

	Basic Usage
	Compiling to Executable
	Executable Options
	Non-Server Executable Options
	GPU Options
	OpenCL-specific Options
	CUDA-specific Options
	Multicore options

	Compiling to Library
	General Concerns
	Value Mapping
	Consumption and Aliasing

	Generating C
	C with OpenCL

	Generating Python

	Reproducibility

	Language Reference
	Comments
	Identifiers and Keywords
	Primitive Types and Values
	Compound Types and Values

	Declarations
	Declaring Functions and Values
	User-Defined Operators
	Entry Points
	Value Declarations
	Type Abbreviations

	Expressions
	Resolving Ambiguities
	Patterns
	Semantics of Simple Expressions
	literal
	qualid
	stringlit
	()
	(e)
	???
	(e1, e2, ..., eN)
	{f1, f2, ..., fN}
	a[i]
	a[i:j:s]
	[x, y, z]
	x..y...z
	x..y..<z
	x..y..>z
	e.f
	m.(e)
	x binop y
	x && y
	x || y
	f x
	#c x y z
	e : t
	e :> t
	! x
	- x
	#[attr] e
	unsafe e
	assert cond e
	a with [i] = e
	r with f = e
	if c then a else b

	Binding Expressions
	let pat = e in body
	let [n] pat = e in body
	let a[i] = v in body
	let f params... = e in body
	loop pat = initial for x in a do loopbody
	loop pat = initial for x < n do loopbody
	loop pat = initial while cond do loopbody
	match x case p1 -> e1 case p2 -> e2

	Function Expressions
	\x y z: t -> e
	(binop)
	(x binop)
	(binop y)
	(.a.b.c)
	(.[i,j])

	Higher-order functions
	Type Inference
	Size Types
	Unknown sizes
	Size going out of scope
	Compound expression passed as function argument
	Compound expression used as range bound
	Complex slicing
	Complex ranges
	Existential size in function return type
	Branches of if return arrays of different sizes
	An array produced by a loop does not have a known size

	Size coercion
	Causality restriction
	Empty array literals
	Sum types
	Modules
	Higher-order functions
	A function whose return type has an unknown size

	Sizes in type abbreviations

	In-place Updates
	Alias Analysis
	In-place Updates and Higher-Order Functions

	Modules
	Module bindings
	module m = mod_exp
	module m : mod_type_exp = mod_exp
	module m mod_params... = mod_exp
	module type mt = mod_type_exp

	Module Expressions
	qualid
	(mod_exp)
	mod_exp : mod_type_exp
	\(p: mt1): mt2 -> e
	e1 e2
	{ decs }
	import "foo"

	Module Type Expressions

	Referencing Other Files
	Attributes
	Expression attributes
	trace
	trace(tag)
	break
	opaque
	incremental_flattening(no_outer)
	incremental_flattening(no_intra)
	incremental_flattening(only_intra)
	incremental_flattening(only_inner)
	noinline
	sequential
	sequential_outer
	sequential_inner
	unroll
	unsafe
	warn(safety_checks)

	Declaration attributes
	noinline
	inline

	Pattern attributes
	Spec attributes

	C API Reference
	Error codes
	Configuration
	Context
	Values
	Opaque Values
	Records

	Entry points
	GPU
	Exotic

	OpenCL
	Exotic

	CUDA
	Exotic

	Multicore
	General guarantees
	Manifest

	JavaScript API Reference
	General concerns
	FutharkContext
	Values
	FutharkArray
	FutharkOpaque
	Entry Points

	Package Management
	Basic Concepts
	Using Packages
	Importing Files from Dependencies
	Upgrading Dependencies

	Creating Packages
	Releasing a Package
	Incrementing the Major Version Number
	Renaming a Package

	Version Selection
	Tests and Documentation for Dependencies
	Safety
	Private repositories

	Writing Fast Futhark Programs
	Parallelism
	Scans and reductions
	Histograms
	Nested parallelism
	Sequential backends
	Multicore backend
	GPU backends

	Value Representation
	Scalars
	Tuples
	Records
	Sum Types
	Functions
	Arrays
	Multidimensional arrays
	Arrays of tuples
	Element order

	Crucial Optimisations
	Fusion

	Free Operations
	Small Arrays
	Inlining

	Compiler Error Index
	Uniqueness errors
	“Using x, but this was consumed at y.”
	“Would consume x, which is not consumable”
	“Unique-typed return value of x is aliased to y, which is not consumable”
	“A unique-typed component of the return value of x is aliased to some other component”
	“Argument passed for consuming parameter is self-aliased.”
	“Consuming parameter passed non-unique argument”
	“Non-consuming higher-order parameter passed consuming argument.”
	“Function result aliases the free variable x”
	“Parameter x refers to size y which will not be accessible to the caller

	Size errors
	“Size x unused in pattern.”
	“Causality check”
	“Unknowable size x in parameter of y”
	“Existential size would appear in function parameter of return type”
	“Existential size n not used as array size”
	“Type abbreviation contains an anonymous size not used constructively as an array size.”
	“Parameter x used as size would go out of scope.”
	“Parameter types x and y are incompatible regarding consuming their arguments
	“Ambiguous size x”

	Module errors
	“Module x is a parametric module

	Other errors
	“Literal out of bounds”
	“Type is ambiguous”
	“The x operator may not be redefined”
	“Unmatched cases in match expression”
	“Full type of x is not known at this point”

	Entry points
	“Entry points may not be declared inside modules.”
	“Entry point functions may not be polymorphic.”
	“Entry point functions may not be higher-order.”
	“Entry point functions must not be size-polymorphic in their return type.”

	Server Protocol
	Basics
	Variables
	Types
	Consumption and aliasing
	Commands
	General Commands
	types
	entry_points
	call entry o1 … oN i1 … iM
	restore file v1 t1 … vN tN
	store file v1 … vN
	free v1 … vN
	rename oldname newname
	inputs entry
	outputs entry
	clear
	pause_profiling
	unpause_profiling
	report
	set_tuning_param param value
	tuning_params entry
	tuning_param_class param

	Record Commands
	fields type
	new v0 type v1 … vN
	project to from field

	Environment Variables
	FUTHARK_COMPILER_DEBUGGING

	C Porting Guide
	Where This Guide Falls Short
	Types
	Operators
	Variable Mutation
	Arrays

	Futhark Compared to Other Functional Languages
	Basic Syntax
	Evaluation
	Types

	Binary Data Format
	Specification
	Type Values

	Glossary
	futhark
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	futhark benchcmp FILE_A FILE_B
	futhark check [-w] PROGRAM
	futhark check-syntax PROGRAM
	futhark datacmp FILE_A FILE_B
	futhark dataget PROGRAM DATASET
	futhark defs PROGRAM
	futhark dev options… PROGRAM
	futhark eval [-f FILE] [-w] <exprs…>
	futhark hash PROGRAM
	futhark imports PROGRAM
	futhark lsp
	futhark query PROGRAM LINE COL
	futhark thanks
	futhark tokens FILE

	SEE ALSO

	futhark-autotune
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-bench
	SYNOPSIS
	DESCRIPTION
	METHODOLOGY
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-c
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	SEE ALSO

	futhark-cuda
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	ENVIRONMENT
	SEE ALSO

	futhark-dataset
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-doc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-literate
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	DIRECTIVES
	FUTHARKSCRIPT
	SAFETY
	BUGS
	SEE ALSO

	futhark-multicore
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	BUGS
	SEE ALSO

	futhark-ispc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	BUGS
	SEE ALSO

	futhark-opencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	SEE ALSO

	futhark-pkg
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	futhark pkg add PKGPATH [X.Y.Z]
	futhark pkg check
	futhark pkg init PKGPATH
	futhark pkg fmt
	futhark pkg remove PKGPATH
	futhark pkg sync
	futhark pkg upgrade
	futhark pkg versions PKGPATH

	COMMIT VERSIONS
	EXAMPLES
	BUGS
	SEE ALSO

	futhark-pyopencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-python
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-repl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-run
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-test
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXAMPLES
	SEE ALSO

	futhark-wasm
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	SEE ALSO

	futhark-wasm-multicore
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	EXECUTABLE OPTIONS
	SEE ALSO

	Index

