Futhark Documentation

Release 0.12.1

DIKU

Table of Contents

1	Insta	ıllation 3
	1.1	Compiling from source
	1.2	Installing from a precompiled snapshot
	1.3	Installing Futhark on Linux
	1.4	Installing Futhark on macOS
	1.5	Setting up Futhark on Windows
2	Basic	c Usage 7
	2.1	Compiling to Executable
	2.2	Compiling to Library
3	Lang	guage Reference 13
	3.1	Identifiers and Keywords
	3.2	Primitive Types and Values
	3.3	Declarations
	3.4	Expressions
	3.5	Higher-order functions
	3.6	Type Inference
	3.7	In-place Updates
	3.8	Module System
	3.9	Referring to Other Files
4	Pack	tage Management 33
	4.1	Basic Concepts
	4.2	Using Packages
	4.3	Creating Packages
	4.4	Version Selection
	4.5	Tests and Documentation for Dependencies
	4.6	Safety
5	C Po	orting Guide 39
	5.1	Where This Guide Falls Short
	5.2	Types
	5.3	Operators
	5.4	Variable Mutation
	5.5	Arrays
	5.5	mayo

6	Futhark Compared to Other Functional Languages	43
	6.1 Basic Syntax	43
	6.2 Evaluation	44
	6.3 Types	44
7	Hacking on the Futhark Compiler	47
•	7.1 Debugging Internal Type Errors	47
	7.2 Checking Generated Code	48
	7.3 Using futhark dev	48
0		40
8	Binary Data Format 8.1 Specification	49 49
	o.i Specification	77
9	futhark	51
	9.1 SYNOPSIS	51
	9.2 DESCRIPTION	51
	9.3 COMMANDS	51
	9.4 SEE ALSO	52
10	futhark-bench	53
	10.1 SYNOPSIS	53
	10.2 DESCRIPTION	53
	10.3 OPTIONS	53
	10.4 EXAMPLES	54
	10.5 SEE ALSO	54
11	futhark-c	55
11	11.1 SYNOPSIS	55
	11.2 DESCRIPTION	55
	11.3 OPTIONS	55
	11.4 SEE ALSO	56
12	futhark-csharp	57
	12.1 SYNOPSIS	57
	12.2 DESCRIPTION	57
	12.3 OPTIONS	57
	12.4 REQUIREMENTS	58
	12.5 SEE ALSO	58
13	futhark-csopencl	59
	13.1 SYNOPSIS	59
	13.2 DESCRIPTION	59
	13.3 OPTIONS	59
	13.4 REQUIREMENTS	60
	13.5 SEE ALSO	60
14	futhark-cuda	61
14	14.1 SYNOPSIS	61
	14.1 STNOPSIS	61
	14.3 OPTIONS	61
	14.4 SEE ALSO	62
		02
15	futhark-dataset	63
	15.1 SYNOPSIS	63
	15.2 DESCRIPTION	63

	15.4	OPTIONS EXAMPLES SEE ALSO		 		 	 		 	 	 		 	 	 	63 64 64
16	futha	rk-doc														65
10																65
		SYNOPSIS														
		DESCRIPTION														65
		OPTIONS														65
		EXAMPLES														66
	16.5	SEE ALSO		 		 	 • •	• •	 	 	 		 •	 	 	66
17	fuths	rk-opencl														67
1,		SYNOPSIS														67
		DESCRIPTION														67
		OPTIONS														67
		SEE ALSO														
	17.4	SEE ALSO		 • •	• •	 	 • •	• • •	 • •	 	 	 •	 •	 •	 	08
18		rk-pkg														69
	18.1	SYNOPSIS		 		 	 		 	 	 			 	 	69
	18.2	DESCRIPTION		 		 	 		 	 	 			 	 	69
	18.3	COMMANDS .		 		 	 		 	 	 		 	 	 	70
	18.4	COMMIT VERSI	ONS	 		 	 		 	 	 			 	 	71
	18.5	EXAMPLES		 		 	 		 	 	 		 		 	71
	18.6	BUGS		 		 	 		 	 	 		 		 	71
	18.7	SEE ALSO		 		 	 		 	 	 		 	 	 	71
19		ark-pyopencl SYNOPSIS		 												73 73
		DESCRIPTION														73
		OPTIONS														73
		SEE ALSO														74
• •																
20		rk-python														75
		SYNOPSIS														75 75
		DESCRIPTION														75
		OPTIONS														75
	20.4	SEE ALSO		 		 	 	• •	 	 	 		 •	 	 	76
21	futha	rk-repl														77
	21.1	SYNOPSIS		 		 	 		 	 	 		 		 	77
	21.2	DESCRIPTION		 		 	 		 	 	 		 		 	77
	21.3	OPTIONS								 	 					
		SEE ALSO														77
22		rk-run														79
		SYNOPSIS														79
		DESCRIPTION														79
		OPTIONS														79
	22.4	SEE ALSO		 		 	 		 	 	 				 	80
23	futha	rk-test														81
4 0		SYNOPSIS														81
		DESCRIPTION														81
																_
																82
	23.4	EXAMPLES		 • •		 	 		 	 	 	 •	 •	 	 	83

າ 2	5	CEE	ALSC	١.																	0
/, 7 .	.)	OEE.	AL AL			 				 											04

Welcome to the documentation for the Futhark compiler and language. For a basic introduction, please see the Futhark website. To get started, read the page on *Installation*. Once the compiler has been installed, you might want to take a look at *Basic Usage*. This User's Guide contains a *Language Reference*, but new Futhark programmers are probably better served by reading Parallel Programming in Futhark first.

Documentation for the included basis library is also available online.

The particularly interested reader may also want to peruse the publications, or the development blog.

Table of Contents 1

2 Table of Contents

CHAPTER 1

Installation

There are two main ways to install the Futhark compiler: using a precompiled tarball or compiling from source. Both methods are discussed below. If you are using Linux, see *Installing Futhark on Linux*. If you are using Windows, make sure to read *Setting up Futhark on Windows*. If you are using macOS, read *Installing Futhark on macOS*.

Futhark is also available via Nix. If you are using Nix, simply install the futhark derivation from Nixpkgs.

1.1 Compiling from source

We use the Haskell Tool Stack to handle dependencies and compilation of the Futhark compiler, so you will need to install the stack tool. Fortunately, the stack developers provide ample documentation about installing Stack on a multitude of operating systems. If you're lucky, it may even be in your local package repository.

You can either retrieve a source release tarball or perform a checkout of our Git repository:

```
$ git clone https://github.com/diku-dk/futhark.git
```

This will create a directory futhark, which you must enter:

```
$ cd futhark
```

To get all the prerequisites for building the Futhark compiler (including, if necessary, the appropriate version of the Haskell compiler), run:

```
$ stack setup
```

Note that this will not install anything system-wide and will have no effect outside the Futhark build directory. Now you can run the following command to build the Futhark compiler, including all dependencies:

```
$ stack build
```

The Futhark compiler and its tools will now be built. This step typically requires at least 8GiB of memory. You may be able to build it on a smaller machine by adding the --fast option, although the resulting Futhark compiler binary will run slower.

After building, you can copy the binaries to your \$HOME/.local/bin directory by running:

```
$ stack install
```

Note that this does not install the Futhark manual pages.

1.2 Installing from a precompiled snapshot

Tarballs of binary releases can be found online, but are available only for very few platforms (as of this writing, only GNU/Linux on x86 64). See the enclosed README. md for installation instructions.

Furthermore, every day a program automatically clones the Git repository, builds the compiler, and packages a simple tarball containing the resulting binaries, built manpages, and a simple Makefile for installing. The implication is that these tarballs are not vetted in any way, nor more stable than Git HEAD at any particular moment in time. They are provided for users who wish to use the most recent code, but are unable to compile Futhark themselves.

At the moment, we build such snapshots only for a single operating system:

Linux (x86_64) futhark-nightly-linux-x86_64.tar.xz

In time, we hope to make snapshots available for more platforms, but we are limited by system availability.

1.3 Installing Futhark on Linux

• Linuxbrew is a distribution-agnostic package manager that contains a formula for Futhark. If Linuxbrew is installed (which does not require root access), installation is as easy as:

```
$ brew install futhark
```

Note that as of this writing, Linuxbrew is hampered by limited compute resources for building packages, so the Futhark version may be a bit behind.

• Arch Linux users can use a futhark-nightly package.

Otherwise (or if the version in the package system is too old), your best bet is to install from source or use a tarball, as described above.

1.4 Installing Futhark on macOS

Futhark is available on Homebrew, and the latest release can be installed via:

```
$ brew install futhark
```

Or you can install the unreleased development version with:

```
$ brew install --HEAD futhark
```

This has to compile from source, so it takes a little while (20-30 minutes is common).

macOS ships with one OpenCL platform and various devices. One of these devices is always the CPU, which is not fully functional, and is never picked by Futhark by default. You can still select it manually with the usual mechanisms (see *Executable Options*), but it is unlikely to be able to run most Futhark programs. Depending on the system, there may also be one or more GPU devices, and Futhark will simply pick the first one as always. On multi-GPU MacBooks, this is the low-power integrated GPU. It should work just fine, but you might have better performance if you use

the dedicated GPU instead. On a Mac with an AMD GPU, this is done by passing -dAMD to the generated Futhark executable.

1.5 Setting up Futhark on Windows

While the Futhark compiler itself is easily installed on Windows via stack (see above), it takes a little more work to make the OpenCL and PyOpenCL backends functional. This guide was last updated on the 5th of May 2016, and is for computers using 64-bit Windows along with CUDA 7.5 and Python 2.7 (Anaconda preferred).

Also Git for Windows is required for its Linux command line tools. If you have not marked the option to add them to path, there are instructions below how to do so. The GUI alternative to git, Github Desktop is optional and does not come with the required tools.

1.5.1 Setting up Futhark and OpenCL

- 1) Clone the Futhark repository to your hard drive.
- 2) Install Stack using the 64-bit installer. Compile the Futhark compiler as described in *Installation*.
- 3) For editing environment variables it is strongly recommended that you install the Rapid Environment Editor
- 4) For a Futhark compatible C/C++ compiler, that you will also need to install pyOpenCL later, install MingWpy. Do this using the pip install -i https://pypi.anaconda.org/carlkl/simple mingwpy command.
- 5) Assuming you have the latest Anaconda distribution as your primary one, it will get installed to a place such as C:\Users\UserName\Anaconda2\share\mingwpy. The pip installation will not add its bin or include directories to path.

To do so, open the Rapid Environment Editor and add C:\Users\UserName\Anaconda2\share\mingwpy\bin to the system-wide PATH variable.

If you have other MingW or GCC distributions, make sure MingWpy takes priority by moving its entry above the other distributions. You can also change which Python distribution is the default one using the same trick should you need so.

If have done so correctly, typing where gcc in the command prompt should list the aforementioned MingWpy installation at the top or show only it.

To finish the installation, add the C:\Users\UserName\Anaconda2\share\mingwpy\include to the CPATH environment variable (note: *not* PATH). Create the variable if necessary.

6) The header files and the .dll for OpenCL that comes with the CUDA 7.5 distribution also need to be installed into MingWpy. Go to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7. 5\include and copy the CL directory into the MingWpy include directory.

Next, go to C:\Program Files\NVIDIA Corporation\OpenCL and copy the OpenCL64.dll file into the MingWpy lib directory (it is next to include).

The CUDA distribution also comes with the static OpenCL.lib, but trying to use that one instead of the OpenCL64.dll will cause programs compiled with futhark opencl to crash, so ignore it completely.

Now you should be able to compile with futhark opencl and run Futhark programs on the GPU.

Congratulations!

1.5.2 Setting up PyOpenCL

The following instructions are for how to setup the futhark-pyopencl backend.

First install Mako using pip install mako.

Also install PyPNG using pip install pypng (not stricly necessary, but some examples make use of it).

- 7) Clone the PyOpenCL repository to your hard drive. Do this instead of downloading the zip, as the zip will not contain some of the other repositories it links to and you will end up with missing header files.
- 8) If you have ignored the instructions and gotten Python 3.x instead 2.7, you will have to do some extra work.

Edit .\pyopencl\compyte\ndarray\gen_elemwise.py and . \pyopencl\compyte\ndarray\test_gpu_ndarray.py and convert most Python 2.x style print statements to Python 3 syntax. Basically wrap print arguments in brackets "(..)" and ignore any lines containing StringIO >> operator.

Otherwise just go to the next point.

9) Go into the repo directory and from the command line execute python configure.py.

Edit siteconf.py to following:

```
CL_TRACE = false
CL_ENABLE_GL = false
CL_INC_DIR = ['c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.

$\include'$]
CL_LIB_DIR = ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.

$\include'$]
CL_LIB_DIR = ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.

$\include'$]
CL_LIBNAME = ['OpenCL']
CXXFLAGS = ['-std=c++0x']
LDFLAGS = []
```

Run the following commands:

```
> python setup.py build_ext --compiler=mingw32 > python setup.py install
```

If everything went in order, pyOpenCL should be installed on your machine now.

10) Lastly, Pygame needs to be installed. Again, not stricly necessary, but some examples make use of it. To do so on Windows, download pygame-1.9.2a0-cp27-none-win_amd64.whl from here. cp27 means Python 2.7 and win amd64 means 64-bit Windows.

Go to the directory you have downloaded the file and execute pip install pygame-1.9. 2a0-cp27-none-win_amd64.whl from the command line.

Now you should be able to run the Game of Life example.

11) To run the makefiles, first setup make by going to the bin directory of MingWpy and making a copy of mingw32-make.exe. Then simply rename mingw32-make - Copy.exe or similar to make.exe. Now you will be able to run the makefiles.

Also, if you have not selected to add the optional Linux command line tools to PATH during the Git for Windows installation, add the C:\Program Files\Git\usr\bin directory to PATH manually now.

12) This guide has been written off memory, so if you are having difficulties - ask on the issues page. There might be errors in it.

Basic Usage

Futhark contains several code generation backends. Each is provided as subcommand of the futhark binary. For example, futhark compiles a Futhark program by translating it to sequential C code, while futhark propercy generates Python code with calls to the PyOpenCL library. The different compilers all contain the same frontend and optimisation pipeline - only the code generator is different. They all provide roughly the same command line interface, but there may be minor differences and quirks due to characteristics of the specific backends.

There are two main ways of compiling a Futhark program: to an executable (by using --executable, which is the default), and to a library (--library). Executables can be run immediately, but are useful mostly for testing and benchmarking. Libraries can be called from non-Futhark code.

2.1 Compiling to Executable

A Futhark program is stored in a file with the extension . fut. It can be compiled to an executable program as follows:

```
$ futhark c prog.fut
```

This makes use of the futhark compiler, but any other will work as well. The compiler will automatically invoke gcc to produce an executable binary called prog. If we had used futhark py instead of futhark c, the prog file would instead have contained Python code, along with a shebang for easy execution. In general, when compiling file foo.fut, the result will be written to a file foo (i.e. the extension will be stripped off). This can be overridden using the -o option. For more details on specific compilers, see their individual manual pages.

Executables generated by the various Futhark compilers share a common command-line interface, but may also individually support more options. When a Futhark program is run, execution starts at one of its *entry points*. By default, the entry point named main is run. An alternative entry point can be indicated by using the -e option. All entry point functions must be declared appropriately in the program (see *Entry Points*). If the entry point takes any parameters, these will be read from standard input in a subset of the Futhark syntax. A binary input format is also supported; see *Binary Data Format*. The result of the entry point is printed to standard output.

Only a subset of all Futhark values can be passed to an executable. Specifically, only primitives and arrays of primitive types are supported. In particular, nested tuples and arrays of tuples are not permitted. Non-nested tuples are supported are supported as simply flat values. This restriction is not present for Futhark programs compiled to libraries. If an

entry point *returns* any such value, its printed representation is unspecified. As a special case, an entry point is allowed to return a flat tuple.

Instead of compiling, there is also an interpreter, accessible as futhark run and futhark repl. The latter is an interactive prompt, useful for experimenting with Futhark expressions. Be aware that the interpreter runs code very slowly.

2.1.1 Executable Options

All generated executables support the following options.

-t FILE

Print the time taken to execute the program to the indicated file, an integral number of microseconds. The time taken to perform setup or teardown, including reading the input or writing the result, is not included in the measurement. See the documentation for specific compilers to see exactly what is measured.

-r RUNS

Run the specified entry point the given number of times (plus a warmup run). The program result is only printed once, after the last run. If combined with -t, one measurement is printed per run. This is a good way to perform benchmarking.

-D

Print debugging information on standard error. Exactly what is printed, and how it looks, depends on which Futhark compiler is used. This option may also enable more conservative (and slower) execution, such as frequently synchronising to check for errors.

-b

Print the result using the binary data format (*Binary Data Format*). For large outputs, this is significantly faster and takes up less space.

Parallel Options

The following options are supported by executables generated with the parallel backends (opencl, pyopencl, csopencl, and cuda).

```
--tuning=FILE
```

Load tuning options from the indicated *tuning file*. The file must contain lines of the form SIZE=VALUE, where each *SIZE* must be one of the sizes listed by the --print-sizes option (without size class), and the *VALUE* must be a non-negative integer. Extraneous spaces or blank lines are not allowed. A zero means to use the default size, whatever it may be. In case of duplicate assignments to the same size, the last one takes predecence. This is equivalent to passing each size setting on the command like using the --size option, but more convenient.

```
--print-sizes
```

Print a list of tunable sizes followed by their *size class* in parentheses, which indicates what they are used for.

```
--size=SIZE=VALUE
```

Set one of the tunable sizes to the given value. Using the --tuning option is more convenient.

OpenCL-specific Options

The following options are supported by executables generated with the OpenCL backends (opencl, pyopencl, and csopencl):

-p PLATFORM

Pick the first OpenCL platform whose name contains the given string. The special string #k, where k is an integer, can be used to pick the k-th platform, numbered from zero.

-d DEVICE

Pick the first OpenCL device whose name contains the given string. The special string #k, where k is an integer, can be used to pick the k-th device, numbered from zero. If used in conjunction with -p, only the devices from matching platforms are considered.

--dump-opencl FILE

Don't run the program, but instead dump the embedded OpenCL program to the indicated file. Useful if you want to see what is actually being executed.

--load-opencl FILE

Instead of using the embedded OpenCL program, load it from the indicated file. This is extremely unlikely to result in successful execution unless this file is the result of a previous call to --dump-opencl (perhaps lightly modified).

--dump-opencl-binary FILE

Don't run the program, but instead dump the compiled version of the embedded OpenCL program to the indicated file. On NVIDIA platforms, this will be PTX code. If this option is set, no entry point will be run.

--load-opencl-binary FILE

Load an OpenCL binary from the indicated file.

--build-option OPT

Add an additional build option to the string passed to clBuildProgram(). Refer to the OpenCL documentation for which options are supported. Be careful - some options can easily result in invalid results.

There is rarely a need to use both -p and -d. For example, to run on the first available NVIDIA GPU, -p NVIDIA is sufficient, as there is likely only a single device associated with this platform. On *nix (including macOS), the clinfo tool (available in many package managers) can be used to determine which OpenCL platforms and devices are available on a given system. On Windows, CPU-z can be used.

CUDA-specific Options

The following options are supported by executables generated by the cuda backend:

--dump-cuda FILE

Don't run the program, but instead dump the embedded CUDA program to the indicated file. Useful if you want to see what is actually being executed.

--load-cuda FILE

Instead of using the embedded CUDA program, load it from the indicated file. This is extremely unlikely to result in successful execution unless this file is the result of a previous call to --dump-cuda (perhaps lightly modified).

```
--dump-ptx FILE
```

As --dump-cuda, but dumps the compiled PTX code instead.

```
--load-ptx FILE
```

Instead of using the embedded CUDA program, load compiled PTX code from the indicated file

```
--nvrtc-option=OPT
```

Add the given option to the command line used to compile CUDA kernels with NVRTC. The list of supported options varies with the CUDA version but can be found in the NVRTC documentation.

2.2 Compiling to Library

While compiling a Futhark program to an executable is useful for testing, it is not suitable for production use. Instead, a Futhark program should be compiled into a reusable library in some target language, enabling integration into a larger program. Five of the Futhark compilers support this: futhark c, futhark opencl, futhark cuda, futhark py, and futhark pyopencl.

2.2.1 General Concerns

Futhark entry points are mapped to some form of function or method in the target language. Generally, an entry point taking *n* parameters will result in a function taking *n* parameters. Extra parameters may be added to pass in context data, or *out*-parameters for writing the result, for target languages that do not support multiple return values from functions.

Not all Futhark types can be mapped cleanly to the target language. Arrays of tuples, for example, are a common issue. In such cases, *opaque types* are used in the generated code. Values of these types cannot be directly inspected, but can be passed back to Futhark entry points. In the general case, these types will be named with a random hash. However, if you insert an explicit type annotation (and the type name contains only characters valid for identifiers for the used backend), the indicated name will be used. Note that arrays contain brackets, which are usually not valid in identifiers. Defining a simple type alias is the best way around this.

2.2.2 Generating C

A Futhark program futlib. fut can be compiled to reusable C code using either:

```
$ futhark c --library futlib.fut
```

Or:

```
$ futhark opencl --library futlib.fut
```

This produces two files in the current directory: futlib.c and futlib.h. If we wish (and are on a Unix system), we can then compile futlib.c to a shared library like this:

```
$ gcc dotprod.c -o libdotprod.so -fPIC -shared
```

However, details of how to link the generated code with other C code is highly system-dependent, and outside the scope of this manual.

The generated header file (here, futlib.h) specifies the API, and is intended to be human-readable. The basic usage revolves around creating a *configuration object*, which can then be used to obtain a *context object*, which must be passed whenever entry points are called.

The configuration object is created using the following function:

```
struct futhark_context_config *futhark_context_config_new();
```

Depending on the backend, various functions are generated to modify the configuration. The following is always available:

A configuration object can be used to create a context with the following function:

```
struct futhark_context *futhark_context_new(struct futhark_context_config *cfg);
```

Memory management is entirely manual. Deallocation functions are provided for all types defined in the header file. Everything returned by an entry point must be manually deallocated.

Functions that can fail return an integer: 0 on success and a non-zero value on error. A human-readable string describing the error can be retrieved with the following function:

```
char *futhark_context_get_error(struct futhark_context *ctx);
```

It is the caller's responsibility to free () the returned string. Any subsequent call to the function returns NULL, until a new error occurs.

For now, many internal errors, such as failure to allocate memory, will cause the function to abort () rather than return an error code. However, all application errors (such as bounds and array size checks) will produce an error code.

The API functions are thread safe.

C with OpenCL

When generating C code with futhark opencl (which is likely the common case), extra API functions are provided for directly accessing or providing the OpenCL objects used by Futhark. Take care when using these functions. In particular, a Futhark context can now be provided with the command queue to use:

```
struct futhark_context *futhark_context_new_with_command_queue(struct futhark_context_
→config *cfg, cl_command_queue queue);
```

As a cl_command_queue specifies an OpenCL device, this is also how manual platform and device selection is possible. A function is also provided for retrieving the command queue used by some Futhark context:

```
cl_command_queue futhark_context_get_command_queue(struct futhark_context *ctx);
```

This can be used to connect two separate Futhark contexts that have been loaded dynamically.

The raw cl_mem object underlying a Futhark array can be accessed with the function named futhark_values_raw_type, where type depends on the array in question. For example:

The array will be stored in row-major form in the returned memory object. The function performs no copying, so the cl_mem still belongs to Futhark, and may be reused for other purposes when the corresponding array is freed. A dual function can be used to construct a Futhark array from a cl mem:

This function *does* copy the provided memory into fresh internally allocated memory. The array is assumed to be stored in row-major form offset bytes into the memory region.

2.2.3 Generating Python

The futhark py and futhark pyopencl compilers both support generating reusable Python code, although the latter of these generates code of sufficient performance to be worthwhile. The following mentions options and parameters only available for futhark pyopencl. You will need at least PyOpenCL version 2015.2.

We can use futhark pyopencl to translate the program futlib.fut into a Python module futlib.py with the following command:

```
$ futhark pyopencl --library futlib.fut
```

This will create a file futlib.py, which contains Python code that defines a class named futlib. This class defines one method for each entry point function (see *Entry Points*) in the Futhark program. The methods take one parameter for each parameter in the corresponding entry point, and return a tuple containing a value for every value returned by the entry point. For entry points returning a single (non-tuple) value, just that value is returned (that is, single-element tuples are not returned).

After the class has been instantiated, these methods can be invoked to run the corresponding Futhark function. The constructor for the class takes various keyword parameters:

```
interactive=BOOL
```

If True (the default is False), show a menu of available OpenCL platforms and devices, and use the one chosen by the user.

```
platform_pref=STR
```

Use the first platform that contains the given string. Similar to the -p option for executables.

```
device_pref=STR
```

Use the first device that contains the given string. Similar to the -d option for executables.

Futhark arrays are mapped to either the Numpy ndarray type or the pyopencl.array type. Scalars are mapped to Numpy scalar types.

CHAPTER 3

Language Reference

This reference seeks to describe every construct in the Futhark language. It is not presented in a tutorial fashion, but rather intended for quick lookup and documentation of subtleties. For this reason, it is not written in a bottom-up manner, and some concepts may be used before they are fully defined. It is a good idea to have a basic grasp of Futhark (or some other functional programming language) before reading this reference. An ambiguous grammar is given for the full language. The text describes how ambiguities are resolved in practice (for example by applying rules of operator precedence).

This reference describes only the language itself. Documentation for the basis library is available elsewhere.

3.1 Identifiers and Keywords

```
id
                   letter (letter | " " | "'") * | " " id
quals
              ::=
                   (id ".") +
qualid
              ::=
                   id | quals id
binop
              ::=
                   opstartchar opchar*
qualbinop
              ::=
                   binop | quals binop |
fieldid
              ::=
                   decimal | id
                   "+" | "-" | "*"
opstartchar
             ::=
                   opstartchar | "."
opchar
                   "#" id
constructor
             ::=
```

Many things in Futhark are named. When we are defining something, we give it an unqualified name (*id*). When referencing something inside a module, we use a qualified name (*qualid*). The constructor names of a sum type (*Compound Types and Values*) are identifiers prefixed with #, with no space afterwards. The fields of a record are named with *fieldid*. Note that a *fieldid* can be a decimal number. Futhark has three distinct name spaces: terms, module types, and types. Modules (including parametric modules) and values both share the term namespace.

3.2 Primitive Types and Values

```
literal ::= intnumber | floatnumber | "true" | "false"
```

Boolean literals are written true and false. The primitive types in Futhark are the signed integer types i8, i16, i32, i64, the unsigned integer types u8, u16, u32, u64, the floating-point types f32, f64, as well as bool. An f32 is always a single-precision float and a f64 is a double-precision float.

```
int_type ::= "i8" | "i16" | "i32" | "i64" | "u8" | "u16" | "u32" | "u64" | float_type ::= "f8" | "f16" | "f32" | "f64"
```

Numeric literals can be suffixed with their intended type. For example 42i8 is of type i8, and 1337e2f64 is of type f64. If no suffix is given, the type of the literal will be inferred based on its use. If the use is not constrained, integral literals will be assigned type i32, and decimal literals type f64. Hexadecimal literals are supported by prefixing with 0x, and binary literals by prefixing with 0b.

Floats can also be written in hexadecimal format such as $0 \times 1.fp3$, instead of the usual decimal notation. Here, $0 \times 1.f$ evaluates to $1 \cdot 15/16$ and the p3 multiplies it by $2^3 = 8$.

```
intnumber
            ::=
                 (decimal | hexadecimal | binary) [int_type]
decimal
            ::=
                 decdigit (decdigit |"_")*
hexadecimal ::=
                 0 ("x" | "X") hexdigit (hexdigit | " ") *
                 0 ("b" | "B") bindigit (bindigit | "_")*
binary
       ::=
floatnumber
                      (pointfloat | exponentfloat) [float_type]
                 ::=
pointfloat
                 ::= [intpart] fraction
exponentfloat
                 ::= (intpart | pointfloat) exponent
hexadecimalfloat ::= 0 ("x" | "X") hexintpart hexfraction ("p" | "P") ["+" | "-"] decdiging
intpart
        ::= decdigit (decdigit |"_")*
                ::= "." decdigit (decdigit |"_") *
fraction
hexintpart
               ::=
                      hexdigit (hexdigit | "_") *
                ::= "." hexdigit (hexdigit | " ") *
hexfraction
                ::= ("e" | "E") ["+" | "-"] decdigit+
exponent
             "0"..."9"
decdigit ::=
hexdigit ::=
              decdigit | "a"..."f" | "A"..."F"
              "0" | "1"
bindigit ::=
```

3.2.1 Compound Types and Values

All primitive values can be combined in tuples and arrays. A tuple value or type is written as a sequence of commaseparated values or types enclosed in parentheses. For example, (0, 1) is a tuple value of type (i32, i32). The elements of a tuple need not have the same type – the value (false, 1, 2.0) is of type (bool, i32, f64). A tuple element can also be another tuple, as in ((1,2), (3,4)), which is of type ((i32, i32), (i32, i32)). A tuple cannot have just one element, but empty tuples are permitted, although they are not very useful-these are written () and are of type ().

```
qualid
type
               ::=
                     | array_type
                     | tuple_type
                     | record_type
                     | sum_type
                     | function_type
                     | type type_arg | "*" type
                     "[" [dim] "]" type
array_type
               ::=
                     "(" ")" | "(" type ("[" ", " type "]") * ")"
tuple type
               ::=
                     "{" "}" | "{" fieldid ":" type (", " fieldid ":" type) * "}"
record_type
               ::=
                     constructor type* ("|" constructor type*)*
sum type
               ::=
                    param_type "->" type
               ::=
function_type
                    type | "(" id ":" type ")"
param_type
               ::=
                    "[" [dim] "]" | type
               ::=
type_arg
                    qualid | decimal
dim
               ::=
```

An array value is written as a sequence of zero or more comma-separated values enclosed in square brackets: [1,2,3]. An array type is written as [d]t, where t is the element type of the array, and d is an integer indicating the size. We typically elide d, in which case the size will be inferred. As an example, an array of three integers could be written as [1,2,3], and has type [3]i32. An empty array is written as [], and its type is inferred from its use. When writing Futhark values for such uses as futhark test (but not when writing programs), the syntax empty (t) can be used to denote an empty array with row type t.

Multi-dimensional arrays are supported in Futhark, but they must be *regular*, meaning that all inner arrays must have the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type [3][2]i32, but [[1,2], [3,4,5], [6,7]] is not, because there we cannot come up with integers m and n such that [m] [n]i32 describes the array. The restriction to regular arrays is rooted in low-level concerns about efficient compilation. However, we can understand it in language terms by the inability to write a type with consistent dimension sizes for an irregular array value. In a Futhark program, all array values, including intermediate (unnamed) arrays, must be typeable.

Sum types are anonymous in Futhark, and are written as the constructors separated by vertical bars. Each constructor consists of a #-prefixed *name*, followed by zero or more types, called its *payload*. **Note:** The current implementation of sum types is fairly inefficient, in that all possible constructors of a sum-typed value will be resident in memory. Avoid using sum types where multiple constructors have large payloads. Further, there is an implementation weakness where arrays of sum types with an array payload may result in incorrect size inference and run-time errors. Try to avoid these for now.

Records are mappings from field names to values, with the field names known statically. A tuple behaves in all respects like a record with numeric field names, and vice versa. It is an error for a record type to name the same field twice.

A parametric type abbreviation can be applied by juxtaposing its name and its arguments. The application must provide as many arguments as the type abbreviation has parameters - partial application is presently not allowed. See *Type Abbreviations* for further details.

Functions are classified via function types, but they are not fully first class. See *Higher-order functions* for the details.

```
stringlit ::= '"' stringchar '"'
stringchar ::= <any source character except "\" or newline or quotes>
```

String literals are supported, but only as syntactic sugar for UTF-8 encoded arrays of u8 values. There is no character type in Futhark.

3.3 Declarations

A Futhark file or module consists of a sequence of declarations. Each declaration is processed in order, and a declaration can only refer to names bound by preceding declarations.

The open declaration brings names defined in another module into scope (see also *Module System*). For the meaning of import, see *Referring to Other Files*. If a declaration is prefixed with local, whatever names it defines will *not* be visible outside the current module. In particular local open is used to bring names from another module into scope, without making those names available to users of the module being defined. In most cases, using module type ascription is a better idea.

3.3.1 Declaring Functions and Values

Functions and values must be defined before they are used. A function declaration must specify the name, parameters, and body of the function:

```
let name params...: rettype = body
```

Hindley-Milner-style type inference is supported. A parameter may be given a type with the notation (name: type). Functions may not be recursive. Optionally, the programmer may put *shape declarations* in the return type and parameter types; see *Shape Declarations*. A function can be *polymorphic* by using type parameters, in the same way as for *Type Abbreviations*:

```
let reverse [n] 't (xs: [n]t): [n]t = xs[::-1]
```

Type parameters for a function do not need to cover the types of all parameters. The type checker will add more if necessary. For example, the following is well typed:

```
let pair 'a (x: a) y = (x, y)
```

A new type variable will be invented for the parameter y.

Shape and type parameters are not passed explicitly when calling function, but are automatically derived. If an array value v is passed for a type parameter t, all other arguments passed of type t must have the same shape as v. For example, consider the following definition:

```
let pair 't (x: t) (y: t) = (x, y)
```

The application pair [1] [2,3] will fail at run-time.

To simplify the handling of in-inplace updates (see *In-place Updates*), the value returned by a function may not alias any global variables.

3.3.2 User-Defined Operators

Infix operators are defined much like functions:

```
let (p1: t1) op (p2: t2): rt = ...
```

For example:

```
let (a:i32,b:i32) +^ (c:i32,d:i32) = (a+c, b+d)
```

We can also define operators by enclosing the operator name in parentheses and suffixing the parameters, as an ordinary function:

```
let (+^) (a:i32,b:i32) (c:i32,d:i32) = (a+c, b+d)
```

This is necessary when defining a polymorphic operator.

A valid operator name is a non-empty sequence of characters chosen from the string "+-*/%=!><&^". The fixity of an operator is determined by its first characters, which must correspond to a built-in operator. Thus, +^ binds like +, whilst *^ binds like *. The longest such prefix is used to determine fixity, so >>= binds like >>, not like >.

It is not permitted to define operators with the names && or $|\cdot|$ (although these as prefixes are accepted). This is because a user-defined version of these operators would not be short-circuiting. User-defined operators behave exactly like ordinary functions, except for bbeing infix.

A built-in operator can be shadowed (i.e. a new + can be defined). This will result in the built-in polymorphic operator becoming inaccessible, except through the intrinsics module.

An infix operator can also be defined with prefix notation, like an ordinary function, by enclosing it in parentheses:

```
let (+) (x: i32) (y: i32) = x - y
```

This is necessary when defining operators that take type or shape parameters.

3.3.3 Entry Points

Apart from declaring a function with the keyword let, it can also be declared with entry. When the Futhark program is compiled any top-level function declared with entry will be exposed as an entry point. If the Futhark program has been compiled as a library, these are the functions that will be exposed. If compiled as an executable, you can use the --entry-point command line option of the generated executable to select the entry point you wish to run.

Any top-level function named main will always be considered an entry point, whether it is declared with entry or not.

3.3.4 Value Declarations

A named value/constant can be declared as follows:

```
let name: type = definition
```

The definition can be an arbitrary expression, including function calls and other values, although they must be in scope before the value is defined.

3.3. Declarations 17

3.3.5 Shape Declarations

Whenever a pattern occurs (in let, loop, and function parameters), as well as in return types, *shape declarations* may be used to express invariants about the shapes of arrays that are accepted or produced by the function. For example:

```
let f [n] (a: [n]i32) (b: [n]i32): [n]i32 =
  map (+) a b
```

We use a *shape parameter*, [n], to explicitly quantify the names of shapes. The [n] parameter need not be explicitly passed when calling f. Rather, its value is implicitly deduced from the arguments passed for the value parameters. Any size parameter must be used in a value parameter. This is an error:

```
let f [n] (x: i32) = n
```

A shape declaration can also be an integer constant (with no suffix). The dimension names bound can be used as ordinary variables within the scope of the parameters. If a function is called with arguments, or returns a value, that does not fulfill the shape constraints, the program will fail with a runtime error. Likewise, if a pattern with shape declarations is attempted bound to a value that does not fulfill the invariants, the program will fail with a runtime error. For example, this will fail:

```
let x: [3]i32 = iota 2
```

While this will succeed and bind n to 2:

```
let [n] x: [n]i32 = iota 2
```

3.3.6 Type Abbreviations

```
type_bind ::= "type" id type_param* "=" type
type_param ::= "[" id "]" | "'" id | "'^" id
```

Type abbreviations function as shorthands for the purpose of documentation or brevity. After a type binding type t1 = t2, the name t1 can be used as a shorthand for the type t2. Type abbreviations do not create distinct types: the types t1 and t2 are entirely interchangeable.

A type abbreviation can have zero or more parameters. A type parameter enclosed with square brackets is a *shape parameter*, and can be used in the definition as an array dimension size, or as a dimension argument to other type abbreviations. When passing an argument for a shape parameter, it must be enclosed in square brackets. Example:

```
type two_intvecs [n] = ([n]i32, [n]i32)
let x: two_intvecs [2] = (iota 2, replicate 2 0)
```

Shape parameters work much like shape declarations for arrays. Like shape declarations, they can be elided via square brackets containing nothing.

A type parameter prefixed with a single quote is a *type parameter*. It is in scope as a type in the definition of the type abbreviation. Whenever the type abbreviation is used in a type expression, a type argument must be passed for the parameter. Type arguments need not be prefixed with single quotes:

```
type two_vecs [n] 't = ([n]t, [n]t)
type two_intvecs [n] = two_vecs [n] i32
let x: two_vecs [2] i32 = (iota 2, replicate 2 0)
```

A type parameter prefixed with '^ is a *lifted type parameter*. These may be instantiated with types that may be functions. On the other hand, values of such types are subject to the same restrictions as function types (cannot be put in an arrays, returned from if, or used as a loop parameter; see *Higher-order functions*).

3.4 Expressions

Expressions are the basic construct of any Futhark program. An expression has a statically determined *type*, and produces a *value* at runtime. Futhark is an eager/strict language ("call by value").

The basic elements of expressions are called *atoms*, for example literals and variables, but also more complicated forms.

```
atom
               literal
               | qualid ("." fieldid) *
               | stringlit
                 "(" ")"
                 "(" exp ")" ("." fieldid) *
               | "(" exp (", " exp) * ")"
                 "{" "}"
               | "{" field (", " field) * "}"
               | qualid "[" index ("," index)* "]"
               | "(" exp ")" "[" index ("," index) * "]"
               | quals "." "(" exp ")"
                 "[" exp ("," exp)* "]"
                 "[" exp [".." exp] "..." exp "]"
                 "(" qualbinop ")"
                 "(" exp qualbinop ")"
                "(" qualbinop exp ")"
                "(" ( "." field )+ ")"
                "(" "." "[" index ("," index)* "]" ")"
exp
          ::=
               | exp qualbinop exp
               exp exp
               | constructor exp*
               | exp ":" type
               | exp [ ".." exp ] "..." exp
               | exp [
                       ".." exp ] "..<" exp
                exp [ ".." exp ] "..>" exp
                 "if" exp "then" exp "else" exp
               | "let" pat "=" exp "in" exp
               | "let" id "[" index ("," index) * "]" "=" exp "in" exp
                 "let" id type_param* pat+ [":" type] "=" exp "in" exp
                "(" "\" pat+ [":" type] "->" exp ")"
               | "loop" pat [("=" exp)] loopform "do" exp
                 "unsafe" exp
                "assert" atom atom
               | exp "with" "[" index (", " index) * "]" "=" exp
               | exp "with" fieldid ("." fieldid) * "=" exp
               | "match" exp ("case" pat "->" exp)+
field
               fieldid "=" exp
          ::=
               | id
               id
pat
          ::=
```

3.4. Expressions 19

```
| literal
                 ""
                 "(" ")"
                 "(" pat ")"
                 "(" pat (", " pat) + ")"
                 "{" "}"
                 "{" fieldid ["=" pat] ["," fieldid ["=" pat]] "}"
               | constructor pat*
               | pat ":" type
               "for" id "<" exp
loopform ::=
               | "for" pat "in" exp
               | "while" exp
               exp [":" [exp]] [":" [exp]]
index
          ::=
               | [exp] ":" exp [":" [exp]]
               | [exp] [":" exp] ":" [exp]
```

Some of the built-in expression forms have parallel semantics, but it is not guaranteed that the the parallel constructs in Futhark are evaluated in parallel, especially if they are nested in complicated ways. Their purpose is to give the compiler as much freedom and information is possible, in order to enable it to maximise the efficiency of the generated code.

3.4.1 Resolving Ambiguities

The above grammar contains some ambiguities, which in the concrete implementation is resolved via a combination of lexer and grammar transformations. For ease of understanding, they are presented here in natural text.

- An expression x.y may either be a reference to the name y in the module x, or the field y in the record x. Modules and values occupy the same name space, so this is disambiguated by the type of x.
- A type ascription (exp: type) cannot appear as an array index, as it conflicts with the syntax for slicing.
- In f [x], there is am ambiguity between indexing the array f at position x, or calling the function f with the singleton array x. We resolve this the following way:
 - If there is a space between f and the opening bracket, it is treated as a function application.
 - Otherwise, it is an array index operation.
- An expression (-x) is parsed as the variable x negated and enclosed in parentheses, rather than an operator section partially applying the infix operator -.
- The following table describes the precedence and associativity of infix operators. All operators in the same row have the same precedence. The rows are listed in increasing order of precedence. Note that not all operators listed here are used in expressions; nevertheless, they are still used for resolving ambiguities.

Associativity	Operators
left	,
left	:
left	
left	& &
left	<=>=> <==!=
left	& ^
left	<<>>>
left	+ -
left	* / % // %%
left	>
right	<
right	->
left	juxtaposition

3.4.2 Patterns

We say that a pattern is *irrefutable* if it can never fail to match a value of the appropriate type. Concretely, this means that it does not require any specific sum type constructor (unless the type in question has only a single constructor), or any specific numeric or boolean literal. Patterns used in function parameters and let bindings must be irrefutable. Patterns used in case need not be irrefutable.

A pattern _ matches any value. A pattern consisting of a literal value (e.g. a numeric constant) matches exactly that value.

3.4.3 Semantics of Simple Expressions

literal

Evaluates to itself.

qualid

A variable name; evaluates to its value in the current environment.

stringlit

Evaluates to an array of type []i32 that contains the code points of the characters as integers.

()

Evaluates to an empty tuple.

(e)

Evaluates to the result of e.

3.4. Expressions 21

```
(e1, e2, ..., eN)
```

Evaluates to a tuple containing N values. Equivalent to the record literal {1=e1, 2=e2, ..., N=eN}.

```
{f1, f2, ..., fN}
```

A record expression consists of a comma-separated sequence of *field expressions*. Each field expression defines the value of a field in the record. A field expression can take one of two forms:

f = e: defines a field with the name f and the value resulting from evaluating e.

f: defines a field with the name f and the value of the variable f in scope.

Each field may only be defined once.

a[i]

Return the element at the given position in the array. The index may be a comma-separated list of indexes instead of just a single index. If the number of indices given is less than the rank of the array, an array is returned.

The array a must be a variable name or a parenthesized expression. Futhermore, there *may not* be a space between a and the opening bracket. This disambiguates the array indexing a [i], from a [i], which is a function call with a literal array.

a[i:j:s]

Return a slice of the array a from index i to j, the former inclusive and the latter exclusive, taking every s-th element. The s parameter may not be zero. If s is negative, it means to start at i and descend by steps of size s to j (not inclusive).

It is generally a bad idea for s to be non-constant. Slicing of multiple dimensions can be done by separating with commas, and may be intermixed freely with indexing.

If s is elided it defaults to 1. If i or j is elided, their value depends on the sign of s. If s is positive, i become 0 and j become the length of the array. If s is negative, i becomes the length of the array minus one, and j becomes minus one. This means that a [::-1] is the reverse of the array a.

[x, y, z]

Create an array containing the indicated elements. Each element must have the same type and shape.

x..y...z

Construct an integer array whose first element is x and which proceeds stride of y-x until reaching z (inclusive). The . . y part can be elided in which case a stride of 1 is used. The stride may not be zero. An empty array is returned in cases where z would never be reached or x and y are the same value.

x..y..<z

Construct an integer array whose first elements is x, and which proceeds upwards with a stride of y until reaching z (exclusive). The . . y part can be elided in which case a stride of 1 is used. An empty array is returned in cases where z would never be reached or x and y are the same value.

x..y..>z

Construct an integer array whose first elements is x, and which proceeds downwards with a stride of y until reaching z (exclusive). The ... y part can be elided in which case a stride of -1 is used. An empty array is returned in cases where z would never be reached or x and y are the same value.

e.f

Access field f of the expression e, which must be a record or tuple.

m. (e)

Evaluate the expression e with the module m locally opened, as if by open. This can make some expressions easier to read and write, without polluting the global scope with a declaration-level open.

x binop y

Apply an operator to \times and y. Operators are functions like any other, and can be user-defined. Futhark pre-defines certain "magical" *overloaded* operators that work on many different types. Overloaded functions cannot be defined by the user. Both operands must have the same type. The predefined operators and their semantics are:

* *

Power operator, defined for all numeric types.

//, %%

Division and remainder on integers, with rounding towards zero.

The usual arithmetic operators, defined for all numeric types. Note that / and % rounds towards negative infinity when used on integers - this is different from in C.

Bitwise operators, respectively bitwise xor, and, or, arithmetic shift right and left, and logical shift right. Shift amounts must be non-negative and the operands must be integers. Note that, unlike in C, bitwise operators have *higher* priority than arithmetic operators. This means that x & y == z is understood as (x & y) == z, rather than x & (y == z) as it would in C. Note that the latter is a type error in Futhark anyhow.

```
==, !=
```

Compare any two values of builtin or compound type for equality.

Company any two values of numeric type for equality.

x && y

Short-circuiting logical conjunction; both operands must be of type bool.

x || y

Short-circuiting logical disjunction; both operands must be of type bool.

3.4. Expressions 23

f x

Apply the function f to the argument x.

#c x y z

Apply the sum type constructor #x to the payload x, y, and z. A constructor application is always assumed to be saturated, i.e. its entire payload provided. This means that constructors may not be partially applied.

e: t

Annotate that e is expected to be of type t, failing with a type error if it is not. If t is an array with shape declarations, the correctness of the shape declarations is checked at run-time.

Due to ambiguities, this syntactic form cannot appear as an array index expression unless it is first enclosed in parentheses. However, as an array index must always be of type i32, there is never a reason to put an explicit type ascription there.

! x

Logical negation if x is of type bool. Bitwise negation if x is of integral type.

- x

Numerical negation of x, which must be of numeric type.

unsafe e

Elide safety checks and assertions (such as bounds checking) that occur during execution of e. This is useful if the compiler is otherwise unable to avoid bounds checks (e.g. when using indirect indexes), but you really do not want them there. Make very sure that the code is correct; eliding such checks can lead to memory corruption.

assert cond e

Terminate execution with an error if cond evaluates to false, otherwise produce the result of evaluating e. Unless e produces a value that is used subsequently (it can just be a variable), dead code elimination may remove the assertion.

```
a with [i] = e
```

Return a, but with the element at position i changed to contain the result of evaluating e. Consumes a.

r with f = e

Return the record r, but with field f changed to have value e. The type of the field must remain unchanged.

if c then a else b

If c evaluates to true, evaluate a, else evaluate b.

3.4.4 Binding Expressions

let pat = e in body

Evaluate e and bind the result to the irrefutable pattern pat (see *Patterns*) while evaluating body. The in keyword is optional if body is a let expression. See also *Shape Declarations*.

```
let a[i] = v in body
```

Write v to a [i] and evaluate body. The given index need not be complete and can also be a slice, but in these cases, the value of v must be an array of the proper size. This notation is Syntactic sugar for let a = a with [i] = v in a.

```
let f params... = e in body
```

Bind f to a function with the given parameters and definition (e) and evaluate body. The function will be treated as aliasing any free variables in e. The function is not in scope of itself, and hence cannot be recursive. See also *Shape Declarations*.

loop pat = initial for x in a do loopbody

- 1. Bind pat to the initial values given in initial.
- 2. For each element x in a, evaluate loopbody and rebind pat to the result of the evaluation.
- 3. Return the final value of pat.

The = initial can be left out, in which case initial values for the pattern are taken from equivalently named variables in the environment. I.e., loop(x) = ... is equivalent to loop(x = x) = ...

See also Shape Declarations.

```
loop pat = initial for x < n do loopbody</pre>
```

Equivalent to loop (pat = initial) for x in [0..1..<n] do loopbody.

loop pat = initial = while cond do loopbody

- 1. Bind pat to the initial values given in initial.
- 2. If cond evaluates to true, bind pat to the result of evaluating loopbody, and repeat the step.
- 3. Return the final value of pat.

See also Shape Declarations.

```
match x case p1 -> e1 case p2 -> e2
```

Match the value produced by x to each of the patterns in turn, picking the first one that succeeds. The result of the corresponding expression is the value of the entire match expression. All the expressions associated with a case must have the same type (but not necessarily match the type of x). It is a type error if there is not a case for every possible value of x - inexhaustive pattern matching is not allowed.

3.4. Expressions 25

3.4.5 Function Expressions

```
\xyz: t -> e
```

Produces an anonymous function taking parameters x, y, and z, returns type t, and whose body is e. Lambdas do not permit type parameters; use a named function if you want a polymorphic function.

(binop)

An operator section that is equivalent to $\xy \rightarrow x \times binop \times y$.

(x binop)

An operator section that is equivalent to $\y -> x *binop* y$.

(binop y)

An operator section that is equivalent to $\x -> x *binop* y$.

(.a.b.c)

An operator section that is equivalent to $\x -> x.a.b.c.$

(.[i,j])

An *operator section* that is equivalent to $\x \rightarrow x[i, j]$.

3.5 Higher-order functions

At a high level, Futhark functions are values, and can be used as any other value. However, to ensure that the compiler is able to compile the higher-order functions efficiently via *defunctionalisation*, certain type-driven restrictions exist on how functions can be used. These also apply to any record or tuple containing a function (a *functional type*):.

- Arrays of functions are not permitted.
- A function cannot be returned from an *if* expression.
- A loop parameter cannot be a function.

Further, *type parameters* are divided into *non-lifted* (bound with an apostrophe, e.g. 't), and *lifted* ('^t). Only lifted type parameters may be instantiated with a functional type. Within a function, a lifted type parameter is treated as a functional type. All abstract types declared in modules (see *Module System*) are considered non-lifted, and may not be functional.

See also *In-place updates* for details on how uniqueness types interact with higher-order functions.

3.6 Type Inference

Futhark supports Hindley-Milner-style type inference, so in many cases explicit type annotations can be left off. Record field projection cannot in isolation be fully inferred, and may need type annotations where their inputs are bound. Further, unique types (see *In-place updates*) must be explicitly annotated.

3.7 In-place Updates

In-place updates do not provide observable side effects, but they do provide a way to efficiently update an array inplace, with the guarantee that the cost is proportional to the size of the value(s) being written, not the size of the full array.

The a with [i] = v language construct, and derived forms, performs an in-place update. The compiler verifies that the original array (a) is not used on any execution path following the in-place update. This involves also checking that no *alias* of a is used. Generally, most language constructs produce new arrays, but some (slicing) create arrays that alias their input arrays.

When defining a function parameter or return type, we can mark it as *unique* by prefixing it with an asterisk. For example:

```
let modify (a: *[]i32) (i: i32) (x: i32): *[]i32 =
   a with [i] = a[i] + x
```

For bulk in-place updates with multiple values, use the scatter function in the basis library. In the parameter declaration a: *[i32], the asterisk means that the function modify has been given "ownership" of the array a, meaning that any caller of modify will never reference array a after the call again. This allows the with expression to perform an in-place update.

After a call modify a i x, neither a or any variable that *aliases* a may be used on any following execution path.

3.7.1 Alias Analysis

The rules used by the Futhark compiler to determine aliasing are intuitive in the intra-procedural case. Aliases are associated with entire arrays. Aliases of a record are tuple are tracked for each element, not for the record or tuple itself. Most constructs produce fresh arrays, with no aliases. The main exceptions are if, loop, function calls, and variable literals.

- After a binding let a = b, that simply assigns a new name to an existing variable, the variable a aliases b. Similarly for record projections and patterns.
- The result of an if aliases the union of the aliases of the components.
- The result of a loop aliases the initial values, as well as any aliases that the merge parameters may assume at the end of an iteration, computed to a fixed point.
- The aliases of a value returned from a function is the most interesting case, and depends on whether the return value is declared *unique* (with an asterisk *) or not. If it is declared unique, then it has no aliases. Otherwise, it aliases all arguments passed for *non-unique* parameters.

3.7.2 In-place Updates and Higher-Order Functions

Uniqueness typing generally interacts poorly with higher-order functions. The issue is that we cannot control how many times a function argument is applied, or to what, so it is not safe to pass a function that consumes its argument. The following two conservative rules govern the interaction between uniqueness types and higher-order functions:

3.6. Type Inference 27

- 1. In the expression let p = e1 in ..., if any in-place update takes place in the expression e1, the value bound by p must not be or contain a function.
- 2. A function that consumes one of its arguments may not be passed as a higher-order argument to another function.

3.8 Module System

```
mod_bind ::= "module" id mod_param* "=" [":" mod_type_exp] "=" mod_exp
mod_param ::= "(" id ":" mod_type_exp ")"
mod_type_bind ::= "module" "type" id type_param* "=" mod_type_exp
```

Futhark supports an ML-style higher-order module system. *Modules* can contain types, functions, and other modules and module types. *Module types* are used to classify the contents of modules, and *parametric modules* are used to abstract over modules (essentially module-level functions). In Standard ML, modules, module types and parametric modules are called structs, signatures, and functors, respectively. Module names exist in the same name space as values, but module types are their own name space.

Named modules are declared as:

```
module name = module expression
```

A named module type is defined as:

```
module type name = module type expression
```

Where a module expression can be the name of another module, an application of a parametric module, or a sequence of declarations enclosed in curly braces:

```
module Vec3 = {
  type t = ( f32 , f32 , f32 )
  let add(a: t) (b: t): t =
    let (a1, a2, a3) = a in
    let (b1, b2, b3) = b in
      (a1 + b1, a2 + b2 , a3 + b3)
}
module AlsoVec3 = Vec3
```

Functions and types within modules can be accessed using dot notation:

```
type vector = Vec3.t
let double(v: vector): vector = Vec3.add v v
```

We can also use open Vec3 to bring the names defined by Vec3 into the current scope. Multiple modules can be opened simultaneously by separating their names with spaces. In case several modules define the same names, the ones mentioned last take precedence. The first argument to open may be a full module expression.

Named module types are defined as:

```
module type ModuleTypeName = module type expression
```

A module type expression can be the name of another module type, or a sequence of *specifications*, or *specs*, enclosed in curly braces. A spec can be a *value spec*, indicating the presence of a function or value, an *abstract type spec*, or a *type abbreviation spec*. For example:

This module type specifies the presence of an *abstract type* t, as well as a function operating on values of type t. We can use *module type ascription* to restrict a module to what is exposed by some module type:

```
module AbstractVec = Vec3 : Addable
```

The definition of AbstractVec.t is now hidden. In fact, with this module type, we can neither construct values of type AbstractVec.T or convert them to anything else, making this a rather useless use of abstraction. As a derived form, we can write module M: S = e to mean module M = e: S.

Parametric modules allow us to write definitions that abstract over modules. For example:

```
module Times = \(M: Addable) -> {
  let times (x: M.t) (k: int): M.t =
   loop (x' = x) for i < k do
        T.add x' x
}</pre>
```

We can instantiate Times with any module that fulfills the module type Addable and get back a module that defines a function times:

```
module Vec3Times = Times Vec3
```

Now Vec3Times.times is a function of type Vec3.t \rightarrow int \rightarrow Vec3.t. As a derived form, we can write module M p = e to mean module M = $p \rightarrow$ e.

3.8.1 Module Expressions

A module expression produces a module. Modules are collections of bindings produced by declarations (*dec*). In particular, a module may contain other modules or module types.

qualid

Evaluates to the module of the given name.

```
(mod_exp)
```

Evaluates to mod_exp.

```
mod_exp : mod_type_exp
```

Module ascription evaluates the module expression and the module type expression, verifies that the module implements the module type, then returns a module that exposes only the functionality described by the module type. This is how internal details of a module can be hidden.

```
\ (p: mt1): mt2 \rightarrow e
```

Constructs a *parametric module* (a function at the module level) that accepts a parameter of module type mt1 and returns a module of type mt2. The latter is optional, but the parameter type is not.

e1 e2

Apply the parametric module m1 to the module m2.

{ decs }

Returns a module that contains the given definitions. The resulting module defines any name defined by any declaration that is not local, *in particular* including names made available via open.

```
import "foo"
```

Returns a module that contains the definitions of the file "foo" relative to the current file. See *Referring to Other Files*

3.8.2 Module Type Expressions

```
qualid
mod type exp ::=
                  | "{" spec* "}"
                  | mod_type_exp "with" qualid type_param* "=" type
                  | "(" mod_type_exp ")"
                  | "(" id ":" mod_type_exp ")" "->" mod_type_exp
                  | mod_type_exp "->" mod_type_exp
              "val" id type_param* ":" spec_type
spec
          ::=
               | "val" binop type_param* ":" spec_type
               | "type" id type_param* "=" type
               "module" id ":" mod_type_exp
               | "include" mod_type_exp
               type | type "->" spec_type
spec_type ::=
```

Module types classify modules, with the only (unimportant) difference in expressivity being that modules can contain module types, but module types cannot specify that a module must contain a specific module types. They can specify of course that a module contains a *submodule* of a specific module type.

3.9 Referring to Other Files

You can refer to external files in a Futhark file like this:

```
import "module"
```

The above will include all non-local top-level definitions from module.fut is and make them available in the current file (but will not export them). The .fut extension is implied.

You can also include files from subdirectories:

```
import "path/to/a/file"
```

The above will include the file path/to/a/file.fut relative to the including file. When importing a nonlocal file (such as the basis library), the path must begin with a forward slash.

Qualified imports are also possible, where a module is created for the file:

```
module M = import "module"
```

In fact, a plain import "module" is equivalent to:

```
local open import "module"
```

Package Management

This document describes futhark pkg, a minimalistic package manager inspired by vgo. A Futhark package is a downloadable collection of .fut files and little more. There is a (not necessarily comprehensive) list of known packages.

4.1 Basic Concepts

A package is uniquely identified with a *package path*, which is similar to a URL, except without a protocol. At the moment, package paths are always links to Git repositories hosted on GitHub or GitLab. In the future, this will become more flexible. As an example, a package path may be github.com/athas/fut-foo.

Packages are versioned with semantic version numbers of the form X.Y.Z. Whenever versions are indicated, all three digits must always be given (that is, 1.0 is not a valid shorthand for 1.0.0).

Most futhark pkg operations involve reading and writing a package manifest, which is always stored in a file called futhark.pkg. The futhark.pkg file is human-editable, but is in day-to-day use mainly modified by futhark pkg automatically.

4.2 Using Packages

Required packages can be added by using futhark pkg add, for example:

```
$ futhark pkg add github.com/athas/fut-foo 0.1.0
```

This will create a new file futhark.pkg with the following contents:

```
require {
   github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733
}
```

This lists one required package, with its package path, minimum version (see *Version Selection*), and the expected commit hash. The latter is used for verification, to ensure that the contents of a package version cannot be changed silently.

futhark pkg will perform network requests to determine whether a package of the given name and with the given version exists and fail otherwise (but it will not check whether the package is otherwise well-formed). The version number can be elided, in which case futhark pkg will use the newest available version. If the package is already present in futhark.pkg, it will simply have its version requirement changed to the one specified in the command. Any dependencies of the package will *not* be added to futhark.pkg, but will still be downloaded by futhark pkg sync (see below).

Adding a package with futhark pkg add modifies futhark.pkg, but does not download the package files. This is done with futhark pkg sync (without further options). The contents of each required dependency and any transitive dependencies will be stored in a subdirectory of lib/ corresponding to their package path. As an example:

Warning: futhark pkg sync will remove any unrecognized files or local modifications to files in lib/(except of course the package directory of the package path listed in futhark.pkg; see *Creating Packages*).

Packages can be removed from futhark.pkg with:

```
$ futhark pkg remove pkgpath
```

You will need to run futhark pkg sync to actually remove the files in lib/.

The intended usage is that futhark.pkg is added to version control, but lib/ is not, as the contents of lib/ can always be reproduced from futhark.pkg. However, adding lib/ works just fine as well.

4.2.1 Importing Files from Dependencies

futhark pkg sync will populate the lib/directory, but does not interact with the compiler in any way. The downloaded files can be imported using the usual import mechanism (*Referring to Other Files*); for example, assuming the package contains a file foo.fut:

```
import "lib/github.com/athas/fut-foo/foo"
```

Ultimately, everything boils down to ordinary file system semantics. This has the downside of relatively long and clumsy import paths, but the upside of predictability.

4.2.2 Upgrading Dependencies

The futhark pkg upgrade command will update every version requirement in futhark.pkg to be the most recent available version. You still need to run futhark pkg sync to actually retrieve the new versions. Be careful - while upgrades are safe if semantic versioning is followed correctly, this is not yet properly machine-checked, so human mistakes may occur.

As an example:

```
$ cat futhark.pkg
require {
 github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733
$ futhark pkg upgrade
Upgraded github.com/athas/fut-foo 0.1.0 => 0.2.1.
$ cat futhark.pkg
require {
 github.com/athas/fut-foo 0.2.1 #3ddc9fc93c1d8ce560a3961e55547e5c78bd0f3e
$ futhark pkg sync
$ tree lib
lib
└─ github.com
     — athas
          — fut-bar
            └─ bar.fut
            fut-foo
            L foo.fut
4 directories, 2 files
```

Note that fut-foo 0.2.1 depends on github.com/athas/fut-bar, so it was fetched by futhark pkg sync.

futhark pkg upgrade will *never* upgrade across a major version number. Due to the principle of Semantic Import Versioning, a new major version is a completely different package from the point of view of the package manager. Thus, to upgrade to a new major version, you will need to use futhark pkg add to add the new version and futhark pkg remove to remove the old version. Or you can keep it around - it is perfectly acceptable to depend on multiple major versions of the same package, because they are really different packages.

4.3 Creating Packages

A package is a directory tree (which at the moment must correspond to a Git repository). It must contain two things:

- A file futhark.pkg at the root defining the package path and any required packages.
- A package directory lib/pkg-path, where pkg-path is the full package path.

The contents of the package directory is what will be made available to users of the package. The repository may contain other things (tests, data files, examples, docs, other programs, etc.), but these are ignored by futhark pkg. This structure can be created automatically by running for example:

```
$ futhark pkg init github.com/sturluson/edda
```

Note again, no https://. The result is this futhark.pkg:

```
package github.com/sturluson/edda
require {
}
```

And this file hierarchy:

```
$ tree lib
lib
____ github.com
____ sturluson
____ edda

3 directories, 0 files
```

Note that futhark pkg init is not necessary simply to use packages, only when creating packages.

When creating a package, the .fut files we are writing will be located inside the lib/ directory. If the package has its own dependencies, whose files we would like to access, we can use relative imports. For example, assume we are creating a package github.com/sturluson/edda and we are writing a Futhark file located at lib/github.com/sturluson/edda/saga.fut. Further, we have a dependency on the package github.com/athas/foo-fut, which is stored in the directory lib/github.com/athas/foo-fut. We can import a file lib/github.com/athas/foo-fut/foo.fut from lib/github.com/sturluson/edda/saga.fut with:

```
import "../foo-fut/foo"
```

4.3.1 Releasing a Package

Currently, a package corresponds exactly to a GitHub repository mirroring the package path. A release is done by tagging an appropriate commit with git tag vX.Y.Z and then pushing the tag to GitHub with git push --tags. In the future, this will be generalised to other code hosting sites and version control systems (and possibly self-hosted tarballs). Remember to take semantic versioning into account - unless you bump the major version number (or the major version is 0), the new version must be *fully compatible* with the old.

When releasing a new package, consider getting it added to the central package list. See this page for details.

4.3.2 Incrementing the Major Version Number

While backwards-incompatible modifications to a package are sometimes unavoidable, it is wise to avoid them as much as possible, as they significantly inconvenience users. To discourage breaking compatibility, futhark pkg tries to ensure that the package developer feels this inconvenience as well. In many cases, an incompatible change can be avoided simply by adding new files to the package rather than incompatibly changing the existing ones.

In the general case, the package path also encodes the major version of the package, separated with a @. For example, version 5.2.1 of a package might have the package path github.com/user/repo@5. For major versions 0 and 1, this can be elided. This means that multiple (major) versions of a package are completely distinct from the point of view of the package manager - this principle is called Semantic Import Versioning, and is intended to facilitate backwards compatibility of packages when new versions are released.

If you really must increment the major version, then you will need to change the package path in futhark.pkg to contain the new major version preceded by @. For example, lib/github.com/sturluson/edda becomes lib/github.com/sturluson/edda@2. As a special case, this is not necessary when moving from major version 0 to 1. Since the package path has changed, you will also need to rename the package directory in lib/. This is painful and awkward, but it is less painful and awkward than what users feel when their dependencies break compatibility.

4.3.3 Renaming a Package

It is likely that the hosting location for a very long-lived package will change from time to time. Since the hosting location is embedded into the package path itself, this causes some issues for futhark pkg.

In simple cases, there is no problem. Consider a package github.com/asgard/loki which is moved to github.com/utgard/loki. If no GitHub-level redirect is set up, all users must update the path by which they import the package. This is unavoidable, unfortunately.

However, the old tagged versions, which contain a futhark.pkg that uses the old package path, will continue to work. This is because the package path indicated in package.pkg merely defines the subdirectory of lib/where the package files are to be found, while the package path used by dependents in the require section defines where the package files are located after futhark pkg sync. Thus, when we import an old version of github.com/utgard/loki whose futhark.pkg defines the package as github.com/asgard/loki, the package files will be retrieved from the lib/github.com/asgard/loki directory in the repository, but stored at lib/github.com/utgard/loki in the local directory.

The above means that package management remains operational in simple cases of renaming, but it is awkward when a transitive dependency is renamed (or deleted). The Futhark package ecosystem is sufficiently embryonic that we have not yet developed more robust solutions. When such solutions are developed, they will likely involve some form of replace directive that allows transparent local renaming of packages, as well as perhaps a central registry of package paths that does not depend on specific source code hosts.

4.4 Version Selection

The package manifest futhark.pkg declares which packages the program depends on. Dependencies are specified as the *oldest acceptable version* within the given major version. Upper version bounds are not supported, as strict adherence to semantic versioning is assumed, so any later version with the same major version number should work. When futhark pkg sync calculates which version of a given package to download, it will pick the oldest version that still satisfies the minimum version requirements of that package in all transitive dependencies. This means that a version may be used that is newer than the one indicated in futhark.pkg, but only if a dependency requires a more recent version.

4.5 Tests and Documentation for Dependencies

Package management has been designed to ensure that the normal development tools work as expected with the contents of the lib/ directory. For example, to ensure that all dependencies do in fact work well (or at least compile) together, run:

futhark test lib

Also, you can generate hyperlinked documentation for all dependencies with:

futhark doc lib -o docs

The file docs/index.html can be opened in a web browser to browse the documentation. Prebuilt documentation is also available via the online package list.

4.4. Version Selection 37

4.6 Safety

In contrast to some other package managers, futhark pkg does not run any package-supplied code on installation, upgrade, or removal. This means that all futhark pkg operations are in principle completely safe (barring exploitable bugs in futhark pkg itself, which is unlikely but not impossible). Further, Futhark code itself is also completely pure, so executing it cannot have any unfortunate effects, such as infecting all of your own packages with a worm. The worst it can do is loop infinitely, consume arbitrarily large amounts of memory, or produce wrong results.

The exception is packages that uses unsafe. With some cleverness, unsafe can be combined with in-place updates to perform arbitrary memory reads and writes, which can trivially lead to exploitable behaviour. You should not use untrusted code that employs unsafe (but the —safe compiler option may help). However, this is not any worse than calling external code in a conventional impure language, which generally can perform any conceivable harmful action.

C Porting Guide

This short document contains a collection of tips and tricks for porting simple numerical C code to Futhark. Futhark's sequential fragment is powerful enough to permit a rather straightforward translation of sequential C code that does not rely on pointer mutation. Additionally, we provide hints on how to recognise C coding patterns that are symptoms of C's weak type system, and how better to organise it in Futhark.

One intended audience of this document is a programmer who needs to translate a benchmark application written in C, or needs to use a simple numerical algorithm that is already available in the form of C source code.

5.1 Where This Guide Falls Short

Some C code makes use of unstructured returns and nonlocal exits (return inside loops, for example). These are not easy to express in Futhark, and will require massaging the control flow a bit. C code that uses goto is likewise not easy to port.

5.2 Types

Futhark provides scalar types that match the ones commonly used in C: u8/u16/u32/u64 for the unsigned integers, i8/i16/i32/i64 for the signed, and f32/f64 for float and double respectively. In contrast to C, Futhark does not automatically promote types in expressions - you will have to manually make sure that both operands to e.g. a multiplication are of the exact same type. This means that you will need to understand exactly which types a given expression in original C program operates on, which generally boils down to converting the type of the (type-wise) smaller operand to that of the larger. Note that the Futhark bool type is not considered a number.

5.3 Operators

Most of the C operators can be found in Futhark with their usual names. Note however that the Futhark / and % operators for integers round towards negative infinity, whereas their counterparts in C round towards zero. You can

write // and %% if you want the C behaviour. There is no difference if both operands are non-zero, but // and %% may be slightly faster. For unsigned numbers, they are exactly the same.

5.4 Variable Mutation

As a sequential language, most C programs quite obviously rely heavily on mutating variables. However, in many programs, this is done in a static manner without indirection through pointers (except for arrays; see below), which is conceptually similar to just declaring a new variable of the same name that shadows the old one. If this is the case, a C assignment can generally be translated to just a let-binding. As an example, let us consider the following function for computing the modular multiplicative inverse of a 16-bit unsigned integer (part of the IDEA encryption algorithm):

```
static uint16_t ideaInv(uint16_t a) {
 uint32_t b;
 uint32_t q;
 uint32_t r;
 int32_t t;
 int32_t u;
 int32_t v;
 b = 0x10001;
 u = 0;
 v = 1;
 while (a > 0)
      q = b / a;
      r = b % a;
      b = a;
      a = r;
      t = v;
      v = u - q * v;
      u = t;
 if(u < 0)
   u += 0x10001;
 return u;
```

Each iteration of the loop mutates the variables a, b, v, and u in ways that are visible to the following iteration. Conversely, the "mutations" of q, r, and t are not truly mutations, and the variable declarations could be moved inside the loop if we wished. Presumably, the C programmer left them outside for aesthetic reasons. When translating such code, it is important to determine exactly how much *true* mutation is going on, and how much is just reuse of variable space. This can usually be done by checking whether a variable is read before it is written in any given iteration - if not, then it is not true mutation. The variables that change value from one iteration of the loop to the next will need to be maintained as *merge parameters* of the Futhark do-loop.

The Futhark program resulting from a straightforward port looks as follows:

40

```
let main(a: u16): u32 =
  let b = 0x10001u32
  let u = 0i32
```

(continues on next page)

(continued from previous page)

```
let v = 1i32 in
let (_,_,u,_) = loop ((a,b,u,v)) while a > 0u16 do
let q = b / u32.u16(a)
let r = b % u32.u16(a)

let b = u32.u16(a)
let a = u16.u32(r)

let t = v
let v = u - i32.u32 (q) * v
let u = t in
(a,b,u,v)

in u32.i32(if u < 0 then u + 0x10001 else u)</pre>
```

Note the heavy use of type conversion and type suffixes for constants. This is necessary due to Futhark's lack of implicit conversions. Note also the conspicuous way in which the do-loop is written - the result of a loop iteration consists of variables whose names are identical to those of the merge parameters.

This program can still be massaged to make it more idiomatic Futhark - for example, the variable t only serves to store the old value of v that is otherwise clobbered. This can be written more elegantly by simply inlining the expressions in the result part of the loop body.

5.5 Arrays

Dynamically sized multidimensional arrays are somewhat awkward in C, and are often simulated via single-dimensional arrays with explicitly calculated indices:

```
a[i * M + j] = foo;
```

This indicates a two-dimensional array a whose *inner* dimension is of size M. We can usually look at where a is allocated to figure out what the size of the outer dimension must be:

```
a = malloc(N * M * sizeof(int));
```

We see clearly that a is a two-dimensional integer array of size N times M - or of type [N] [M] i32 in Futhark. Thus, the update expression above would be translated as:

```
let a[i,j] = foo in
...
```

C programs usually first allocate an array, then enter a loop to provide its initial values. This is not possible in Futhark - consider whether you can write it as a replicate, an iota, or a map. In the worst case, use replicate to obtain an array of the desired size, then use a do-loop with in-place updates to initialise it (but note that this will run stricly sequentially).

5.5. Arrays 41

Futhark Compared to Other Functional Languages

This guide is intended for programmers who are familiar with other functional languages and want to start working with Futhark.

Futhark is a simple language with a complex compiler. Functional programming is fundamentally well suited to data-parallelism, so Futhark's syntax and underlying concepts are taken directly from established functional languages; mostly from Haskell and the members of the ML family. While Futhark does add a few small conveniences (built-in array types) and one complicated and unusual feature (in-place updates via uniqueness types, see *In-place Updates*), a programmer familiar with a common functional language should be able to understand the meaning of a Futhark program, and quickly begin writing their own programs. To speed up this process, we describe here some of the various quirks and unexpected limitations imposed by Futhark. We also recommended reading some of the example programs along with this guide. The guide does *not* cover all Futhark features worth knowing, so do also skim *Language Reference*.

6.1 Basic Syntax

Futhark uses a keyword-based structure, with optional indentation *solely* for human readability. This aspect differs from Haskell and F#.

Names are lexically divided into *identifiers* and *symbols*:

- *Identifiers* begin with a letter or underscore and contain letters, numbers, underscores, and apostrophes.
- Symbols contain the characters found in the default operators $(+-\star/\%=!><|\&^{\wedge})$

All function and variable names must be identifiers, and all infix operators are symbols. An identifier can be used as an infix operator by enclosing it in backticks, as in Haskell.

Identifiers are case-sensitive, and there is no restriction on the case of the first letter (unlike Haskell and OCaml, but like Standard ML).

User-defined operators are possible, but the fixity of the operator depends on its name. Specifically, the fixity of a user-defined operator *op* is equal to the fixity of the built-in operator that is the longest prefix of *op*. For example, <<= would have the same fixity as <<, and =<< the same as =. This rule is the same as the rule found in OCaml and F#.

Top-level functions and values are defined with let, as in OCaml and F#.

6.2 Evaluation

Futhark is a completely pure language, with no cheating through monads or anything of the sort.

Evaluation is *eager* or *call-by-value*, like most non-Haskell languages. However, there is no defined evaluation order. Furthermore, the Futhark compiler is permitted to turn non-terminating programs into terminating programs, for example by removing dead code that might cause an error. Moreover, there is no way to handle errors within a Futhark program (no exceptions or similar); although errors are gracefully reported to whatever invokes the Futhark program.

The evaluation semantics are entirely sequential, with parallelism being solely an operational detail. Hence, race conditions are impossible. The Futhark compiler does not automatically go looking for parallelism. Only certain special constructs and built-in library functions (in particular map, reduce, scan, and filter) may be executed in parallel.

Currying and partial application work as usual (although functions are not fully first class; see *Types*). Some Futhark language constructs look like functions, but are not. This means they cannot be partially applied. These include unsafe and assert.

Lambda terms are written as $\x -> x + 2$, as in Haskell.

A Futhark program is read top-down, and all functions must be declared in the order they are used, like Standard ML. Unlike just about all functional languages, recursive functions are *not* supported. Most of the time, you will use bulk array operations instead, but there is also a dedicated loop language construct, which is essentially syntactic sugar for tail recursive functions.

6.3 Types

Futhark supports a range of integer types, floating point types, and booleans (see *Primitive Types and Values*). A numeric literal can be suffixed with its desired type, such as 1i8 for an eight-bit signed integer. Un-adorned numerals have their type inferred based on use. This only works for built-in numeric types.

Arrays are a built-in type. The type of an array containing elements of type t is written []t (not [t] as in Haskell), and we may optionally annotate it with a size as [n]t (see *Shape Declarations*). Array values are written as [1, 2, 3]. Array indexing is written a [i] with *no* space allowed between the array name and the brace. Indexing of multi-dimensional arrays is written a [i, \dagger]. Arrays are 0-indexed.

All types can be combined in tuples as usual, as well as in *structurally typed records*, as in Standard ML. Non-recursive sum types are supported, and are also structurally typed. Abstract types are possible via the module system; see *Module System*.

If a variable foo is a record of type $\{a: i32, b: bool\}$, then we access field a with dot notation: foo.a. Tuples are a special case of records, where all the fields have a 1-indexed numeric label. For example, (i32, bool) is the same as $\{1: i32, 2: bool\}$, and can be indexed as foo.1.

Sum types are defined as constructors separated by a vertical bar (|). Constructor names always start with a #. For example, #red | #blue i32 is a sum type with the constructors #red and #blue, where the latter has an i32 as payload. The terms #red and #blue 2 produce values of this type. Constructor applications must always be fully saturated. Due to the structural typing, type annotations are usually necessary to resolve ambiguities. For example, the term #blue 2 can produce a value of any type that has an appropriate constructor.

Function types are supported with the usual a -> b, and functions can be passed as arguments to other functions. However, there are some restrictions:

- A function cannot be put in an array (but a record or tuple is fine).
- A function cannot be returned from a branch.
- A function cannot be used as a loop parameter.

Function types interact with type parameters in a subtle way:

```
let id 't (x: t) = x
```

This declaration defines a function id that has a type parameter t. Here, t is an *unlifted* type parameter, which is guaranteed never to be a function type, and so in the body of the function we could choose to put parameter values of type t in an array. However, it means that this identity function cannot be called on a functional value. Instead, we probably want a *lifted* type parameter:

```
let id '^t (x: t) = x
```

Such *lifted* type parameters are not restricted from being instantiated with function types. On the other hand, in the function definition they are subject to the same restrictions as functional types.

Futhark supports Hindley-Milner type inference (with some restrictions), so we could also just write it as:

```
let id x = x
```

Type abbreviations are possible:

```
type foo = (i32, i32)
```

Type parameters are supported as well:

```
type pair 'a 'b = (a, b)
```

As with everything else, they are structurally typed, so the types pair i32 bool and (i32, bool) are entirely interchangeable. Most unusually, this is also the case for sum types. The following two types are entirely interchangeable:

```
type maybe 'a = #just a | #nothing

type option 'a = #nothing | #just a
```

Only for abstract types, where the definition has been hidden via the module system, do type names have any significance.

Size parameters can also be passed:

```
type vector [n] t = [n]t
type i32matrix [n][m] = [n] (vector [m] i32)
```

Note that for an actual array type, the dimensions come *before* the element type, but with a type abbreviation, a size is just another parameter. This easily becomes hard to read if you are not careful.

6.3. Types 45

Hacking on the Futhark Compiler

The Futhark compiler is a significant body of code with a not entirely straightforward design. The main reference is the documentation of the compiler internals that is automatically generated by Haddock. If you feel that it is incomplete, or lacks an explanation, then feel free to report it is an an issue on the GitHub page. Documentation bugs are bugs too.

The Futhark compiler is built using Stack. It's a good idea to familiarise yourself with how it works. As a starting point, here are a few hints:

• To test with different GHC versions, point the STACK_YAML environment variable at another file. For example, to build using the Stack LTS 9.2 snapshot, we would run:

```
$ STACK_YAML=stack-lts-9.2.yaml stack build
```

- When testing, pass --fast to stack to disable the GHC optimiser. This speeds up builds considerably (although it still takes a while). The resulting Futhark compiler will run slower, but it is not something you will notice for small test programs.
- When debugging, pass --profile to stack. This will build the Futhark compiler with debugging information (not just profiling). In particular, hard crashes will print a stack trace. You can also get actual profiling information by passing +RTS -pprof-all -RTS to the Futhark compiler. This asks the Haskell runtime to print profiling information to a file. For more information, see the Profiling chapter in the GHC User Guide.
- You may wish to set the environment variable FUTHARK_COMPILER_DEBUGGING=1. Currently this only has the effect of making the frontend print internal names, but it may control more things in the future.

7.1 Debugging Internal Type Errors

The Futhark compiler uses a typed core language, and the type checker is run after every pass. If a given pass produces a program with inconsistent typing, the compiler will report an error and abort. While not every compiler bug will manifest itself as a core language type error (unfortunately), many will. To write the erroneous core program to a file in case of type error, pass $\neg v$ filename to the compiler. This will also enable verbose output, so you can tell which pass fails. The $\neg v$ option is also useful when the compiler itself crashes, as you can at least tell where in the pipeline it got to.

7.2 Checking Generated Code

Hacking on the compiler will often involve inspecting the quality of the generated code. The recommended way to do this is to use *futhark-c* or *futhark-opencl* to compile a Futhark program to an executable. These backends insert various forms of instrumentation that can be enabled by passing run-time options to the generated executable.

- As a first resort, use -t option to use the built-in runtime measurements. A nice trick is to pass -t /dev/stderr, while redirecting standard output to /dev/null. This will print the runtime on the screen, but not the execution result.
- Optionally use -r to ask for several runs, e.g. -r 10. If combined with -t, this will cause several runtimes to be printed (one per line). The *futhark-bench* tool itself uses -t and -r to perform its measurements.
- Pass -D to have the program print information on allocation and deallocation of memory.
- (futhark-opencl only) Use the -D option to enable synchronous execution. clFinish() will be called after most OpenCL operations, and a running log of kernel invocations will be printed. At the end of execution, the program prints a table summarising all kernels and their total runtime and average runtime.

7.3 Using futhark dev

For debugging specific compiler passes, the futhark dev subcommand allows you to tailor your own compilation pipeline using command line options. It is also useful for seeing what the AST looks like after specific passes.

Binary Data Format

Futhark programs compiled to an executable support both textual and binary input. Both are read via standard input, and can be mixed, such that one argument to an entry point may be binary, and another may be textual. The binary input format takes up significantly less space on disk, and can be read much faster than the textual format. This chapter describes the binary input format and its current limitations. The input formats (whether textual or binary) are not used for Futhark programs compiled to libraries, which instead use whichever format is supported by their host language.

Currently reading binary input is only supported for programs generated by futhark c/futhark opencl, and futhark py/futhark pyopencl. It is *not* supported for futhark run.

You can generate random data in the binary format with futhark dataset (futhark-dataset). This tool can also be used to convert between binary and textual data.

Futhark-generated executables can be asked to generate binary output with the -b option.

8.1 Specification

Elements that are bigger than one byte are always stored using little endian – we mostly run our code on x86 hardware so this seemed like a reasonable choice.

When reading input for an argument to the entry function, we need to be able to differentiate between text and binary input. If the first non-whitespace character of the input is a b we will parse this argument as binary, otherwise we will parse it in text format. Allowing preceding whitespace characters makes it easy to use binary input for some arguments, and text input for others.

The general format has this header:

```
b <version> <num_dims> <type>
```

Where version is a byte containing the version of the binary format used for encoding (currently 2), num_dims is the number of dimensions in the array as a single byte (0 for scalar), and type is a 4 character string describing the type of the values(s) – see below for more details.

Encoding a scalar value is done by treating it as a 0-dimensional array:

```
b <version> 0 <type> <value>
```

To encode an array we must encode the number of dimensions n as a single byte, each dimension dim_i as an unsigned 64-bit little endian integer, and finally all the values in their binary little endian representation:

```
b <version> <n> <type> <dim_1> <dim_2> ... <dim_n> <values>
```

8.1.1 Type Values

A type is identified by a 4 character ASCII string (four bytes). Valid types are:

```
" i8"
" i16"
" i32"
" i64"
" u8"
" u16"
" u32"
" u64"
" f64"
" f64"
```

Note that unsigned and signed integers have the same byte-level representation.

futhark

9.1 SYNOPSIS

futhark <subcommand> options...

9.2 DESCRIPTION

Futhark is a data-parallel functional array language. Through various subcommands, the futhark tool provides facilities for compiling, developing, or analysing Futhark programs. Most subcommands are documented in their own manpage. For example, futhark opencl is documented as *futhark-opencl*. The remaining subcommands are documented in this page.

9.3 COMMANDS

9.3.1 futhark check PROGRAM

Check whether a Futhark program type checks.

9.3.2 futhark datacmp FILE_A FILE_B

Check whether the two files contain the same Futhark values. The files must be formatted using the general Futhark data format that is used by all other executable and tools (such as *futhark-dataset*). All discrepancies will be reported. This is in contrast to *futhark-test*, which only reports the first one.

9.3.3 futhark dev options... PROGRAM

A Futhark compiler development command, intentionally undocumented and intended for use in developing the Futhark compiler, not for programmers writing in Futhark.

9.3.4 futhark imports PROGRAM

Print all non-builtin imported Futhark files to stdout, one per line.

9.4 SEE ALSO

futhark-opencl, futhark-c, futhark-python, futhark-pyopencl, futhark-dataset, futhark-doc, futhark-test, futhark-bench, futhark-run, futhark-repl

52 Chapter 9. futhark

futhark-bench

10.1 SYNOPSIS

futhark bench [options...] programs...

10.2 DESCRIPTION

This tool is the recommended way to benchmark Futhark programs. Programs are compiled using the specified backend (futhark c by default), then run a number of times for each test case, and the average runtime printed on standard output. Refer to *futhark-test* for information on how to format test data. A program will be ignored if it contains no data sets - it will not even be compiled.

If compilation of a program fails, then futhark bench will abort immediately. If execution of a test set fails, an error message will be printed and benchmarking will continue (and --json will write the file), but a non-zero exit code will be returned at the end.

10.3 OPTIONS

- --backend=name The backend used when compiling Futhark programs (without leading futhark, e.g. just opencl).
- **--entry-point=name** Only run entry points with this name.
- **--exclude-case=TAG** Do not run test cases that contain the given tag. Cases marked with "nobench" or "disable" are ignored by default.
- --futhark=program The program used to perform operations (eg. compilation). Defaults to the binary running futhark bench itself.
- --ignore-files=REGEX Ignore files whose path match the given regular expression.
- **--json=file** Write raw results in JSON format to the specified file.

--no-tuning Do not look for tuning files.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might want to run OpenCL programs on a specific device:

--runner=program

If set to a non-empty string, compiled programs are not run directly, but instead the indicated *program* is run with its first argument being the path to the compiled Futhark program. This is useful for compilation targets that cannot be executed directly (as with *futhark-csharp*), or when you wish to run the program on a remote machine.

--runs=count The number of runs per data set.

--skip-compilation Do not run the compiler, and instead assume that each benchmark program has

already been compiled. Use with caution.

--timeout=seconds If the runtime for a dataset exceeds this integral number of seconds, it is aborted.

Note that the time is allotted not *per run*, but for *all runs* for a dataset. A twenty second limit for ten runs thus means each run has only two seconds (minus ini-

tialisation overhead).

A negative timeout means to wait indefinitely.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which is suffixed to the name of the program. For example, given --tuning=tuning (the default), the program foo.fut will be passed the tuning file foo.fut. tuning if it exists.

10.4 EXAMPLES

The following program benchmarks how quickly we can sum arrays of different sizes:

```
-- How quickly can we reduce arrays?
--
-- ==
-- nobench input { 0 }
-- output { 0 }
-- input { 100 }
-- output { 4950 }
-- compiled input { 100000 }
-- output { 704982704 }
-- compiled input { 1000000000 }
-- output { 887459712 }

let main(n: i32): i32 =
    reduce (+) 0 (iota n)
```

10.5 SEE ALSO

futhark-c, futhark-test

futhark-c

11.1 SYNOPSIS

futhark c [options...] infile

11.2 DESCRIPTION

futhark c translates a Futhark program to sequential C code, and either compiles that C code with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code. The standard Futhark optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99.

The resulting program will read the arguments to the entry point (main by default) from standard input and print its return value on standard output. The arguments are read and printed in Futhark syntax.

11.3 OPTIONS

--Werror

-h	Print help text to standard output and exit.
library	Generate a library instead of an executable. Appends .c/.h to the name indicated by the $-\circ$ option to determine output file names.
-o outfile	Where to write the result. If the source program is named foo.fut, this defaults to foo.
safe	Ignore unsafe in program and perform safety checks unconditionally.
-v verbose	Enable debugging output. If compilation fails due to a compiler error, the result of the last successful compiler step will be printed to standard error.
-V	Print version information on standard output and exit.

Treat warnings as errors.

11.4 SEE ALSO

futhark-opencl, futhark-cuda, futhark-test

futhark-csharp

12.1 SYNOPSIS

futhark csharp [options...] infile

12.2 DESCRIPTION

futhark csharp translates a Futhark program to sequential C# code, and either compiles that C# code with the Roslyn C# Compiler csc to an executable binary program, or produces a .dll file that can be linked with other code.. The standard Futhark optimisation pipeline is used, and csc is invoked with -lib:\$MONO_PATH, -r:Mono. Options.dll, and /unsafe.

The resulting program will read the arguments to the entry point (main by default) from standard input and print its return value on standard output. The arguments are read and printed in Futhark syntax.

12.3 OPTIONS

-h	Print help text to standard output and exit.		
library	Generate a library instead of an executable. Appends .dll to the name indicated by the $\neg \circ$ option to determine output file names.		
-o outfile	Where to write the result. If the source program is named 'foo.fut', this defaults to 'foo'.		
safe	Ignore unsafe in program and perform safety checks unconditionally.		
-v verbose	Enable debugging output. If compilation fails due to a compiler error, the result of the last successful compiler step will be printed to standard error.		
-V	Print version information on standard output and exit.		

12.4 REQUIREMENTS

futhark csharp uses the Mono implementation of the .NET framework. To compile and execute the compiled binaries/libraries, you must have the $\texttt{MONO_PATH}$ environment variable defined. $\texttt{MONO_PATH}$ must be set to a directory containing the Mono.Options dll.

Mono. Options is available on https://www.nuget.org/packages/Mono. Options/5.3.0.1

12.5 SEE ALSO

futhark-csopencl

futhark-csopencl

13.1 SYNOPSIS

futhark csopencl [options...] infile

13.2 DESCRIPTION

futhark csopencl translates a Futhark program to C# code invoking OpenCL kernels, and either compiles that C# code with the Roslyn C# Compiler csc to an executable binary program, or produces a .dll file that can be linked with other code. The standard Futhark optimisation pipeline is used, and csc is invoked with $-lib:$MONO_PATH, -r:Cloo.clSharp.dll, -r:Mono.Options.dll, and /unsafe.$

The resulting program will otherwise behave exactly as one compiled with futhark csharp.

Print help text to standard output and exit.

13.3 OPTIONS

-h

library	Generate a library instead of an executable. Appends . dll to the name indicated by the $-\circ$ option to determine output file names.
461	

-o outfile Where to write the result. If the source program is named foo. fut, this defaults

to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result

of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

--Werror Treat warnings as errors.

13.4 REQUIREMENTS

futhark csopencl uses the Mono implementation of the .NET framework. To compile and execute the compiled binaries/libraries, you must have the MONO_PATH environment variable defined. MONO_PATH must be set to a directory containing the Mono.Options and Cloo.clSharp dll's.

Mono. Options is available on https://www.nuget.org/packages/Mono. Options/5.3.0.1

Cloo.clSharp is available on https://www.nuget.org/packages/Cloo.clSharp/

13.5 SEE ALSO

futhark-test, futhark-csharp

futhark-cuda

14.1 SYNOPSIS

futhark cuda [options...] infile

14.2 DESCRIPTION

futhark cuda translates a Futhark program to C code invoking CUDA kernels, and either compiles that C code with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code. The standard Futhark optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99. The resulting program will otherwise behave exactly as one compiled with futhark c.

The generated programs use the NVRTC API for run-time compilation, which must consequently be available.

14.3 OPTIONS

-h

library	Generate a library	instead of an executable.	Appends	.c/.h to the name

Print help text to standard output and exit.

cated by the -o option to determine output file names.

-o outfile Where to write the result. If the source program is named foo.fut, this defaults

to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result

of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

--Werror Treat warnings as errors.

indi-

14.4 SEE ALSO

futhark-opencl

futhark-dataset

15.1 SYNOPSIS

futhark dataset [options...]

15.2 DESCRIPTION

Generate random values in Futhark syntax, which can be useful when generating input datasets for program testing. All Futhark primitive types are supported. Tuples are not supported. Arrays of specific (non-random) sizes can be generated. You can specify maximum and minimum bounds for values, as well as the random seed used when generating the data. The generated values are written to standard output.

If no -g/--generate options are passed, values are read from standard input, and printed to standard output in the indicated format. The input format (whether textual or binary) is automatically detected.

15.3 OPTIONS

-b, --binary Output data in binary Futhark format (must precede –generate).

-g type, --generate type Generate a value of the indicated type, e.g. -g i32 or -g [10]f32.

The type may also be a value, in which case that literal value is generated.

-s int Set the seed used for the RNG. Zero by default.

--T-bounds=<min:max> Set inclusive lower and upper bounds on generated values of type T. T is any primitive type, e.g. i32 or f32. The bounds apply to any following uses of the -g option.

You can alter the output format using the following flags. To use them, add them before data generation (–generate):

--text Output data in text format (must precede –generate). Default.

-t, --type

Output the types of values (textually) instead of the values themselves. Mostly useful when reading values on stdin.

15.4 EXAMPLES

Generate a 4 by 2 integer matrix:

futhark dataset -g [4][2]i32

Generate an array of floating-point numbers and an array of indices into that array:

futhark dataset -g [10]f32 --i32-bounds=0:9 -g [100]i32

To generate binary data, the --binary must come before the --generate:

futhark dataset --binary --generate=[42]i32

Create a binary data file from a data file:

futhark dataset --binary < any_data > binary_data

Determine the types of values contained in a data file:

futhark dataset -t < any_data</pre>

15.5 SEE ALSO

futhark-test, futhark-bench

futhark-doc

16.1 SYNOPSIS

futhark doc [options...] dir

16.2 DESCRIPTION

futhark doc generates HTML-formatted documentation from Futhark code. One HTML file will be created for each .fut file in the given directory, as well as any file reachable through import expressions. The given Futhark code will be considered as one cohesive whole, and must be type-correct.

Futhark definitions may be documented by prefixing them with a block of line comments starting with -- | (see example below). Simple Markdown syntax is supported within these comments. A link to another identifier is possible with the notation `name`@namespace, where namespace must be either term, type, or mtype (module names are in the term namespace). A file may contain a leading documentation comment, which will be considered the file abstract.

futhark doc will ignore any file whose documentation comment consists solely of the word "ignore". This is useful for files that contain tests, or are otherwise not relevant to the reader of the documentation.

16.3 OPTIONS

-h Print help text to standard output and exit.

-o outdir The name of the directory that will contain the generated documentation. This

option is mandatory.

-v, --verbose Print status messages to stderr while running.

-V Print version information on standard output and exit.

16.4 EXAMPLES

```
-- | Gratuitous re-implementation of `map`@term.
--
-- Does exactly the same.
let mymap = ...
```

16.5 SEE ALSO

futhark-test, futhark-bench

futhark-opencl

17.1 SYNOPSIS

futhark opencl [options...] infile

17.2 DESCRIPTION

futhark opencl translates a Futhark program to C code invoking OpenCL kernels, and either compiles that C code with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code. The standard Futhark optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99. The resulting program will otherwise behave exactly as one compiled with futhark c.

17.3 OPTIONS

-h

--safe

--library Generate a library instead of an executable. Appends .c/.h to the name indicated by the -o option to determine output file names.

Print help text to standard output and exit.

-o outfile Where to write the result. If the source program is named foo. fut, this defaults to foo.

Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result

of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

--Werror Treat warnings as errors.

17.4 SEE ALSO

futhark-test, futhark-cuda, futhark-c

futhark-pkg

18.1 SYNOPSIS

futhark pkg add PKGPATH [X.Y.Z]
futhark pkg check
futhark pkg init PKGPATH
futhark pkg fmt
futhark pkg remove PKGPATH
futhark pkg sync
futhark pkg upgrade
futhark pkg versions

18.2 DESCRIPTION

This tool is used to modify the package manifest (futhark.pkg) and download the required packages it describes. futhark pkg is not a build system; you will still need to compile your Futhark code with the usual compilers. The only purpose of futhark pkg is to download code (and perform other package management utility tasks). This manpage is not a general introduction to package management in Futhark; see the User's Guide for that.

The futhark pkg subcommands will modify only two locations in the file system (relative to the current working directory): the futhark pkg file, and the contents of lib/. When modifying lib/, futhark pkg constructs the new version in lib~new/ and backs up the old version in lib~old. If futhark pkg should fail for any reason, you can recover the old state by moving lib~old back. These temporary directories are erased if futhark pkg finishes without errors.

The futhark pkg sync and futhark pkg init subcommands are the only ones that actually modifies lib/; the others modify only futhark.pkg and require you to manually run futhark pkg sync afterwards.

Most commands take a -v/--verbose option that makes futhark pkg write running diagnostics to stderr.

18.3 COMMANDS

18.3.1 futhark pkg add PKGPATH [X.Y.Z]

Add the specified package of the given minimum version as a requirement to futhark.pkg. If no version is provided, the newest one is used. If the package is already required in futhark.pkg, the new version requirement will replace the old one.

Note that adding a package does not automatically download it. Run futhark pkg sync to do that.

18.3.2 futhark pkg check

Verify that the futhark.pkg is valid, that all required packages are available in the indicated versions. This command does not check that these versions contain well-formed code. If a package path is defined in futhark.pkg, also checks that .fut files are located at the expected location in the file system.

18.3.3 futhark pkg init PKGPATH

Create a new futhark.pkg defining a package with the given package path, and initially no requirements.

18.3.4 futhark pkg fmt

Reformat the futhark.pkg file, while retaining any comments.

18.3.5 futhark pkg remove PKGPATH

Remove a package from futhark.pkg. Does not remove it from the lib/directory.

18.3.6 futhark pkg sync

Populate the lib/ directory with the packages listed in futhark.pkg. Warning: this will delete everything in lib/ that does not relate to a file listed in futhark.pkg, as well as any local modifications.

18.3.7 futhark pkg upgrade

Upgrade all package requirements in futhark.pkg to the newest available versions.

18.3.8 futhark pkg versions PKGPATH

Print all available versions for the given package path.

18.4 COMMIT VERSIONS

It is possible to use futhark pkg with packages that have not yet made proper releases. This is done via pseudoversions of the form 0.0.0-yyyymmddhhmmss+committid. The timestamp is not verified against the actual commit. The timestamp ensures that newer commits take precedence if multiple packages depend on a commit version for the same package. If futhark pkg add is given a package with no releases, the most recent commit will be used. In this case, the timestamp is merely set to the current time.

Commit versions are awkward and fragile, and should not be relied upon. Issue proper releases (even experimental 0.x version) as soon as feasible. Released versions also always take precedence over commit versions, since any version number will be greater than 0.0.0.

18.5 EXAMPLES

Create a new package that will be hosted at https://github.com/sturluson/edda:

futhark pkg init github.com/sturluson/edda

Add a package dependency:

futhark pkg add github.com/sturluson/hattatal

Download the dependencies:

futhark pkg sync

And then you're ready to start hacking! (Except that these packages do not actually exist.)

18.6 BUGS

Since the lib/ directory is populated with transitive dependencies as well, it is possible for a package to depend unwittingly on one of the dependencies of its dependencies, without the futhark.pkg file reflecting this.

There is no caching of zipballs and version lists between invocations, so the network traffic can be rather heavy.

Only GitHub and GitLab are supported as code hosting sites.

18.7 SEE ALSO

futhark-test, futhark-doc

futhark-pyopencl

19.1 SYNOPSIS

futhark pyopencl [options...] infile

19.2 DESCRIPTION

futhark pyopencl translates a Futhark program to Python code invoking OpenCL kernels. By default, the program uses the first device of the first OpenCL platform - this can be changed by passing -p and -d options to the generated program (not to futhark pyopencl itself).

The resulting program will otherwise behave exactly as one compiled with futhark py. While the sequential host-level code is pure Python and just as slow as in futhark py, parallel sections will have been compiled to OpenCL, and runs just as fast as when using futhark opencl. The kernel launch overhead is significantly higher, however, so a good rule of thumb when using futhark pyopencl is to aim for having fewer but longer-lasting parallel sections.

The generated code requires at least PyOpenCL version 2015.2.

19.3 OPTIONS

-h Print help text to standard output and exit.

--library Instead of compiling to an executable program, generate a Python module that can

be imported by other Python code. The module will contain a class of the same name as the Futhark source file with .fut removed. Objects of the class define one method per entry point in the Futhark program, with matching parameters

and return value.

-o outfile Where to write the resulting binary. By default, if the source program is named

'foo.fut', the binary will be named 'foo'.

Futhark Documentation, Release 0.12.1

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result

of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

--Werror Treat warnings as errors.

19.4 SEE ALSO

futhark-python, futhark-opencl

futhark-python

20.1 SYNOPSIS

futhark python [options...] infile

20.2 DESCRIPTION

futhark python translates a Futhark program to sequential Python code.

The resulting program will read the arguments to the main function from standard input and print its return value on standard output. The arguments are read and printed in Futhark syntax.

The generated code is very slow, likely too slow to be useful. It is more interesting to use this command's big brother, *futhark-pyopencl*.

20.3 OPTIONS

-h	Print help text to standard output and exit.
library	Instead of compiling to an executable program, generate a Python module that can be imported by other Python code. The module will contain a class of the same name as the Futhark source file with .fut removed. Objects of the class define one method per entry point in the Futhark program, with matching parameters and return value.
-o outfile	Where to write the resulting binary. By default, if the source program is named 'foo.fut', the binary will be named 'foo'.
safe	Ignore unsafe in program and perform safety checks unconditionally.
-v verbose	Enable debugging output. If compilation fails due to a compiler error, the result of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

--Werror Treat warnings as errors.

20.4 SEE ALSO

futhark-pyopencl

futhark-repl

21.1 SYNOPSIS

futhark repl

21.2 DESCRIPTION

Start an interactive Futhark session. This will let you interactively enter expressions and declarations which are then immediately interpreted. If the entered line can be either a declaration or an expression, it is assumed to be a declaration.

Futhark source files can be loaded using the :load command. This will erase any interactively entered definitions. Use the :help command to see a list of commands. All commands are prefixed with a colon.

futhark-repl uses the Futhark interpreter, which grants access to certain special functions. See *futhark-run* for a description.

21.3 OPTIONS

- **-h** Print help text to standard output and exit.
- **-V** Print version information on standard output and exit.

21.4 SEE ALSO

futhark-run, futhark-test

futhark-run

22.1 SYNOPSIS

futhark run [program]

22.2 DESCRIPTION

Execute the given program by evaluating the main function with arguments read from standard input, and write the results on standard output.

futhark-run is very slow, and in practice only useful for testing, teaching, and experimenting with the language. Certain special debugging functions are available in futhark-run:

trace 'a : a -> a Semantically identity, but prints the value on standard output.

break 'a: a -> a Semantically identity, but interrupts execution at the calling point, such that the environment can be inspected. Continue execution by entering an empty input line. Breakpoints are only respected when starting a program from the prompt, not when passing a program on the command line.

22.3 OPTIONS

-e NAME Run the given entry point instead of main.-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

-w, --no-warnings Disable interpreter warnings.

22.4 SEE ALSO

futhark-repl, futhark-test

futhark-test

23.1 SYNOPSIS

futhark test [options...] infiles...

23.2 DESCRIPTION

This tool is used to test Futhark programs based on input/output datasets. If a directory is given, all contained files with a .fut extension are considered.

A Futhark test program is an ordinary Futhark program, with at least one test block describing input/output test cases and possibly other options. A test block consists of commented-out text with the following overall format:

```
description
==
cases...
```

The description is an arbitrary (and possibly multiline) human-readable explanation of the test program. It is separated from the test cases by a line containing just ==. Any comment starting at the beginning of the line, and containing a line consisting of just ==, will be considered a test block. The format of a test case is as follows:

```
[tags { tags... }]
[entry: names...]
[compiled|nobench|random] input ({ values... } | @ filename)
output { values... } | auto output | error: regex
```

If compiled is present before the input keyword, this test case will never be passed to the interpreter. This is useful for test cases that are annoyingly slow to interpret. The nobench keyword is for data sets that are too small to be worth benchmarking, and only has meaning to *futhark-bench*.

If input is preceded by random, the text between the curly braces must consist of a sequence of Futhark types, including sizes in the case of arrays. When futhark test is run, a file located in a data/ subdirectory, containing

values of the indicated types and shapes is, automatically constructed with futhark-dataset. Apart from sizes, integer constants (without any type suffix) are also permitted. These become 132 values.

If input is followed by an @ and a file name (which must not contain any whitespace) instead of curly braces, values will be read from the indicated file. This is recommended for large data sets. This notation cannot be used with random input.

After the input block, the expected result of the test case is written as either output followed by another block of values, or an expected run-time error, in which a regular expression can be used to specify the exact error message expected. If no regular expression is given, any error message is accepted. If neither output nor error is given, the program will be expected to execute successfully, but its output will not be validated.

If output is preceded by auto (as in auto output), the expected values are automatically generated by compiling the program with futhark-c and recording its result for the given input (which must not fail). This is usually only useful for testing or benchmarking alternative compilers, and not for testing the correctness of Futhark programs.

Alternatively, instead of input-output pairs, the test cases can simply be a description of an expected compile time type error:

```
error: regex
```

This is used to test the type checker.

By default, both the interpreter and compiler is run on all test cases (except those that have specified compiled), although this can be changed with command-line options to futhark test.

Tuple syntax is not supported when specifying input and output values. Instead, you can write an N-tuple as its constituent N values. Beware of syntax errors in the values - the errors reported by futhark test are very poor.

An optional tags specification is permitted in the first test block. This section can contain arbitrary tags that classify the benchmark:

```
tags { names... }
```

Tag are sequences of alphanumeric characters, dashes, and underscores, with each tag seperated by whitespace. Any program with the disable tag is ignored by futhark test.

Another optional directive is entry, which specifies the entry point to be used for testing. This is useful for writing programs that test libraries with multiple entry points. Multiple entry points can be specified on the same line by separating them with space, and they will all be tested with the same input/output pairs. The entry directive affects subsequent input-output pairs in the same comment block, and may only be present immediately preceding these input-output pairs. If no entry is given, main is assumed. See below for an example.

For many usage examples, see the tests directory in the Futhark source directory. A simple example can be found in EXAMPLES below.

23.3 OPTIONS

backend=program	The backend used when compiling Futhark programs (without leading futhark, e.g. just opencl).
-c	Only run compiled code - do not run any interpreters.
-C	Compile the programs, but do not run them.
exclude=tag	Do not run test cases that contain the given tag. Cases marked with "disable" are ignored by default.
-i	Only interpret - do not run any compilers.

-t Type-check the programs, but do not run them.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary

running futhark test itself.

--no-terminal Print each result on a line by itself, without line buffering.

--no-tuning Do not look for tuning files.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might want to run OpenCL programs on a specific device:

```
futhark-bench prog.fut --backend=opencl --pass-option=-

→dHawaii
```

--runner=program If

If set to a non-empty string, compiled programs are not run directly, but instead the indicated *program* is run with its first argument being the path to the compiled Futhark program. This is useful for compilation targets that cannot be executed directly (as with *futhark-csharp*), or when you wish to run the program on a remote machine.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which is suffixed to the name of the program. For example, given --tuning=tuning (the default), the program foo.fut will be passed the tuning file foo.fut. tuning if it exists.

23.4 EXAMPLES

The following program tests simple indexing and bounds checking:

```
-- Test simple indexing of an array.
-- ==
-- tags { firsttag secondtag }
-- input { [4,3,2,1] 1 }
-- output { 3 }
-- input { [4,3,2,1] 5 }
-- error: Assertion.*failed

let main (a: []i32) (i: i32): i32 =
   a[i]
```

The following program contains two entry points, both of which are tested:

```
let add(x: i32, y: i32): i32 = x + y

-- Test the add1 function.
-- ==
-- entry: add1
-- input { 1 } output { 2 }

entry add1 (x: i32): i32 = add x 1

-- Test the sub1 function.
-- ==
-- entry: sub1
-- input { 1 } output { 0 }
```

(continues on next page)

23.4. EXAMPLES 83

(continued from previous page)

```
entry sub1 (x: i32): i32 = add x (-1)
```

The following program contains an entry point that is tested with randomly generated data:

```
-- ==
-- random input { [100]i32 [100]i32 } auto output
-- random input { [1000]i32 [1000]i32 } auto output

let main xs ys = i32.product (map2 (*) xs ys)
```

23.5 SEE ALSO

futhark-bench, futhark-repl