
Futhark Documentation
Release 0.3.1

HIPERFIT

Feb 14, 2018

Table of Contents

1 Installation 3
1.1 Compiling from source . 3
1.2 Installing from a precompiled snapshot . 4
1.3 Installing Futhark on Windows . 4

2 Basic Usage 7
2.1 Compiling to Executable . 7
2.2 Compiling to Library . 9

3 Language Reference 11
3.1 Identifiers and Keywords . 11
3.2 Primitive Types and Values . 11
3.3 Expressions . 13
3.4 Shape Declarations . 22
3.5 Declarations . 22
3.6 Module System . 24
3.7 Referring to Other Files . 27
3.8 Literal Defaults . 27

4 C Porting Guide 29
4.1 Where This Guide Falls Short . 29
4.2 Types . 29
4.3 Operators . 29
4.4 Variable Mutation . 30
4.5 Arrays . 31

5 Hacking on the Futhark Compiler 33
5.1 Debugging Internal Type Errors . 33
5.2 Checking Generated Code . 34
5.3 Using the futhark Tool . 34

6 Binary Data Format 35
6.1 Specification . 35

7 futhark 37
7.1 SYNOPSIS . 37
7.2 DESCRIPTION . 37

i

7.3 SEE ALSO . 37

8 futhark-c 39
8.1 SYNOPSIS . 39
8.2 DESCRIPTION . 39
8.3 OPTIONS . 39
8.4 SEE ALSO . 40

9 futhark-opencl 41
9.1 SYNOPSIS . 41
9.2 DESCRIPTION . 41
9.3 OPTIONS . 41
9.4 SEE ALSO . 42

10 futhark-py 43
10.1 SYNOPSIS . 43
10.2 DESCRIPTION . 43
10.3 OPTIONS . 43
10.4 SEE ALSO . 44

11 futhark-pyopencl 45
11.1 SYNOPSIS . 45
11.2 DESCRIPTION . 45
11.3 OPTIONS . 45
11.4 SEE ALSO . 46

12 futharki 47
12.1 SYNOPSIS . 47
12.2 DESCRIPTION . 47
12.3 OPTIONS . 47
12.4 BUGS . 47
12.5 SEE ALSO . 48

13 futhark-test 49
13.1 SYNOPSIS . 49
13.2 DESCRIPTION . 49
13.3 OPTIONS . 50
13.4 EXAMPLES . 51
13.5 SEE ALSO . 51

14 futhark-bench 53
14.1 SYNOPSIS . 53
14.2 DESCRIPTION . 53
14.3 OPTIONS . 53
14.4 EXAMPLES . 54
14.5 SEE ALSO . 54

15 futhark-doc 55
15.1 SYNOPSIS . 55
15.2 DESCRIPTION . 55
15.3 OPTIONS . 55
15.4 SEE ALSO . 55

16 futhark-dataset 57
16.1 SYNOPSIS . 57

ii

16.2 DESCRIPTION . 57
16.3 OPTIONS . 57
16.4 EXAMPLES . 58
16.5 SEE ALSO . 58

iii

iv

Futhark Documentation, Release 0.3.1

Welcome to the documentation for the Futhark compiler and language. For a basic introduction, please see the Futhark
website. To get started, read the page on Installation. Once the compiler has been installed, you might want to take a
look at Basic Usage. This User’s Guide contains a Language Reference, but new Futhark programmers are probably
better served by reading the Futhark Book first.

Documentation for the included basis library is also available online.

The particularly interested reader may also want to peruse the publications, or the development blog.

Table of Contents 1

http://futhark-lang.org
http://futhark-lang.org
https://github.com/diku-dk/futhark-book
https://futhark-lang.org/docs/
https://futhark-lang.org/docs.html#publications
https://futhark-lang.org/blog.html

Futhark Documentation, Release 0.3.1

2 Table of Contents

CHAPTER 1

Installation

There are two ways to install the Futhark compiler: using a precompiled tarball or compiling from source. Both
methods are discussed below. If you are using Windows, make sure to read Installing Futhark on Windows.

1.1 Compiling from source

We use the the Haskell Tool Stack to handle dependencies and compilation of the Futhark compiler, so you will need
to install the stack tool. Fortunately, the stack developers provide ample documentation about installing Stack on
a multitude of operating systems. If you’re lucky, it may even be in your local package repository.

We do not presently issue source releases of Futhark, so the only way to compile from source is to perform a checkout
of our Git repository:

$ git clone https://github.com/diku-dk/futhark.git

This will create a directory futhark, which you must enter:

$ cd futhark

To get all the prerequisites for building the Futhark compiler (including, if necessary, the appropriate version of the
Haskell compiler), run:

$ stack setup

Note that this will not install anything system-wide and will have no effect outside the Futhark build directory. Now
you can run the following command to build the Futhark compiler, including all dependencies:

$ stack build

The Futhark compiler and its tools will now be built. You can copy them to your $HOME/.local/bin directory by
running:

3

http://docs.haskellstack.org/
http://docs.haskellstack.org/#how-to-install

Futhark Documentation, Release 0.3.1

$ stack install

Note that this does not install the Futhark manual pages.

1.2 Installing from a precompiled snapshot

Tarballs of binary releases can be found online, but are available only for very few platforms (as of this writing, only
GNU/Linux on x86_64).

Furthermore, every day a program automatically clones the Git repository, builds the compiler, and packages a simple
tarball containing the resulting binaries, built manpages, and a simple Makefile for installing. The implication is
that these tarballs are not vetted in any way, nor more stable than Git HEAD at any particular moment in time. They
are provided for users who wish to use the most recent code, but are unable to compile Futhark themselves.

At the moment, we build such snapshots only for a single operating system:

Linux (x86_64) futhark-nightly-linux-x86_64.tar.xz

In time, we hope to make snapshots available for more platforms, but we are limited by system availability.

1.3 Installing Futhark on Windows

While the Futhark compiler itself is easily installed on Windows via stack (see above), it takes a little more work to
make the OpenCL and PyOpenCL backends functional. This guide was last updated on the 5th of May 2016, and is
for computers using 64-bit Windows along with CUDA 7.5 and Python 2.7 (Anaconda preferred).

Also Git for Windows is required for its Linux command line tools. If you have not marked the option to add them to
path, there are instructions below how to do so. The GUI alternative to git, Github Desktop is optional and does not
come with the required tools.

1.3.1 Setting up Futhark and OpenCL

1. Clone the Futhark repository to your hard drive.

2. Install Stack using the 64-bit installer. Compile the Futhark compiler as described in Installation.

3. For editing environment variables it is strongly recommended that you install the Rapid Environment Editor

4. For a Futhark compatible C/C++ compiler, that you will also need to install pyOpenCL later, install MingWpy.
Do this using the pip install -i https://pypi.anaconda.org/carlkl/simple mingwpy
command.

5. Assuming you have the latest Anaconda distribution as your primary one, it will get installed to a place such as
C:\Users\UserName\Anaconda2\share\mingwpy. The pip installation will not add its bin or include
directories to path.

To do so, open the Rapid Environment Editor and add C:\Users\UserName\Anaconda2\share\mingwpy\bin
to the system-wide PATH variable.

If you have other MingW or GCC distributions, make sure MingWpy takes priority by moving its entry above
the other distributions. You can also change which Python distribution is the default one using the same trick
should you need so.

If have done so correctly, typing where gcc in the command prompt should list the aforementioned MingWpy
installation at the top or show only it.

4 Chapter 1. Installation

https://futhark-lang.org/releases/
https://futhark-lang.org/releases/futhark-nightly-linux-x86_64.tar.xz
https://developer.nvidia.com/cuda-downloads
https://www.continuum.io/downloads#_windows
https://git-scm.com/download/win
https://desktop.github.com/
http://docs.haskellstack.org/en/stable/install_and_upgrade/#windows
http://www.rapidee.com/en/about

Futhark Documentation, Release 0.3.1

To finish the installation, add the C:\Users\UserName\Anaconda2\share\mingwpy\include to
the CPATH environment variable (note: not PATH). Create the variable if necessary.

6. The header files and the .dll for OpenCL that comes with the CUDA 7.5 distribution also need to be in-
stalled into MingWpy. Go to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.
5\include and copy the CL directory into the MingWpy include directory.

Next, go to C:\Program Files\NVIDIA Corporation\OpenCL and copy the OpenCL64.dll file
into the MingWpy lib directory (it is next to include).

The CUDA distribution also comes with the static OpenCL.lib, but trying to use that one instead of the
OpenCL64.dll will cause programs compiled with futhark-opencl to crash, so ignore it completely.

Now you should be able to compile futhark-opencl and run Futhark programs on the GPU.

Congratulations!

1.3.2 Setting up PyOpenCL

The following instructions are for how to setup the futhark-pyopencl backend.

First install Mako using pip install mako.

Also install PyPNG using pip install pypng (not stricly necessary, but some examples make use of it).

7. Clone the PyOpenCL repository to your hard drive. Do this instead of downloading the zip, as the zip will not
contain some of the other repositories it links to and you will end up with missing header files.

8. If you have ignored the instructions and gotten Python 3.x instead 2.7, you will have to do some extra work.

Edit .\pyopencl\compyte\ndarray\gen_elemwise.py and .
\pyopencl\compyte\ndarray\test_gpu_ndarray.py and convert most Python 2.x style
print statements to Python 3 syntax. Basically wrap print arguments in brackets “(..)” and ignore any lines
containing StringIO >> operator.

Otherwise just go to the next point.

9. Go into the repo directory and from the command line execute python configure.py.

Edit siteconf.py to following:

CL_TRACE = false
CL_ENABLE_GL = false
CL_INC_DIR = ['c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.
→˓5\\include']
CL_LIB_DIR = ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.
→˓5\\lib\\x64']
CL_LIBNAME = ['OpenCL']
CXXFLAGS = ['-std=c++0x']
LDFLAGS = []

Run the following commands:

> python setup.py build_ext --compiler=mingw32
> python setup.py install

If everything went in order, pyOpenCL should be installed on your machine now.

10. Lastly, Pygame needs to be installed. Again, not stricly necessary, but some examples make use of it. To do
so on Windows, download pygame-1.9.2a0-cp27-none-win_amd64.whl from here. cp27 means
Python 2.7 and win_amd64 means 64-bit Windows.

1.3. Installing Futhark on Windows 5

https://github.com/pyopencl/pyopencl
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

Futhark Documentation, Release 0.3.1

Go to the directory you have downloaded the file and execute pip install pygame-1.9.
2a0-cp27-none-win_amd64.whl from the command line.

Now you should be able to run the Mandelbrot Explorer and and Game of Life examples.

11. To run the makefiles, first setup make by going to the bin directory of MingWpy and making a copy of
mingw32-make.exe. Then simply rename mingw32-make - Copy.exe or similar to make.exe.
Now you will be able to run the makefiles.

Also, if you have not selected to add the optional Linux command line tools to PATH during the Git for
Windows installation, add the C:\Program Files\Git\usr\bin directory to PATH manually now.

12. This guide has been written off memory, so if you are having difficulties - ask on the issues page. There might
be errors in it.

6 Chapter 1. Installation

https://github.com/diku-dk/futhark-benchmarks/tree/master/misc/mandelbrot-explorer
https://github.com/diku-dk/futhark-benchmarks/tree/master/misc/life
https://github.com/diku-dk/futhark/issues

CHAPTER 2

Basic Usage

Futhark contains several code generation backends. Each is provided as a full standalone compiler binary. For exam-
ple, futhark-c compiles a Futhark program by translating it to sequential C code, while futhark-pyopencl
generates Python and the PyOpenCL library. The different compilers all contain the same frontend and optimisation
pipeline - only the code generator is different. They all provide roughly the same command line interface, but there
may be minor differences and quirks due to characteristics of the specific backends.

There are two main ways of compiling a Futhark program: to an executable (by using --executable, which is the
default), and to a library (--library). Executables can be run immediately, but are useful mostly for testing and
benchmarking. Libraries can be called from non-Futhark code.

2.1 Compiling to Executable

A Futhark program is stored in a file with the extension .fut. It can be compiled to an executable program as follows:

$ futhark-c prog.fut

This makes use of the futhark-c compiler, but any other will work as well. The compiler will automatically invoke
gcc to produce an executable binary called prog. If we had used futhark-py instead of futhark-c, the prog
file would instead have contained Python code, along with a shebang for easy execution. In general, when compiling
file foo.fut, the result will be written to a file foo (i.e. the extension will be stripped off). This can be overridden
using the -o option. For more details on specific compilers, see their individual manual pages.

Executables generated by the various Futhark compilers share a common command-line interface, but may also indi-
vidually support more options. When a Futhark program is run, execution starts at one of its entry points. By default,
the entry point named main is run. An alternative entry point can be indicated by using the -e option. All entry point
functions must be declared appropriately in the program (see Entry Points). If the entry point takes any parameters,
these will be read from standard input in a subset of the Futhark syntax. A binary input format is also supported; see
Binary Data Format. The result of the entry point is printed to standard output.

Only a subset of all Futhark values can be passed to an executable. Specifically, only primitives and arrays of primitive
types are supported. In particular, nested tuples and arrays of tuples are not permitted. Non-nested tuples are supported
are supported as simply flat values. This restriction is not present for Futhark programs compiled to libraries. If an

7

https://en.wikipedia.org/wiki/Shebang_%28Unix%29

Futhark Documentation, Release 0.3.1

entry point returns any such value, its printed representation is unspecified. As a special case, an entry point is allowed
to return a flat tuple.

Instead of compiling, there is also an interpreter, futharki. Be aware that it is very slow, and does not produce
better error messages than the compiler. Note: If you run futharki without any options, you will see something
that looks deceptively like a REPL, but it is not yet finished, and only marginally useful in its present state.

2.1.1 Executable Options

All generated executables support the following options.

-t FILE

Print the time taken to execute the program to the indicated file, an integral number of mi-
croseconds. The time taken to perform tup or teardown, including reading the input or writing
the sult, is not included in the measurement. See the documentation r specific compilers to see
exactly what is measured.

-r RUNS

Run the specified entry point the given number of times (plus a warmup run). The program
result is only printed once, after the last run. If combined with -t, one measurement is printed
per run. This is a good way to perform benchmarking.

-D

Print debugging information on standard error. Exactly what is printed, and how it looks,
depends on which Futhark compiler is used. This option may also enable more conservative
(and slower) execution, such as frequently synchronising to check for errors.

-b

Print the result using the binary data format (Binary Data Format). For large outputs, this is
significantly faster and takes up less space.

The following options are supported by executables generated by futhark-opencl and futhark-pyopencl:

-p PLATFORM

Pick the first OpenCL platform whose name contains the given string. The special string #k,
where k is an integer, can be used to pick the k-th platform, numbered from zero.

-d DEVICE

Pick the first OpenCL device whose name contains the given string. The special string #k,
where k is an integer, can be used to pick the k-th device, numbered from zero.

--dump-opencl FILE

Dump the embedded OpenCL program to the indicated file. May useful if you want to see
what is actually being executed.

--load-opencl FILE

Instead of using the embedded OpenCL program, load it from the indicated file. This is ex-
tremely unlikely to result in succesful execution unless this file is the result of a previous call
to --dump-opencl (perhaps lightly modified).

There is rarely a need to use both -p and -d. For example, to run on the first available NVIDIA GPU, -p NVIDIA
is sufficient, as there is likely only a single device associated with this platform. On *nix (including macOS), the
clinfo tool (available in many package managers) can be used to determine which OpenCL platforms and devices are
available on a given system. On Windows, CPU-z can be used.

8 Chapter 2. Basic Usage

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://github.com/Oblomov/clinfo
https://www.cpuid.com/softwares/cpu-z.html

Futhark Documentation, Release 0.3.1

2.2 Compiling to Library

While compiling a Futhark program to an executable is useful for testing, it is not suitable for production use. Instead,
a Futhark program should be compiled into a reusable library in some target language, enabling integration into a
larger program. Four of the Futhark compilers support this: futhark-c, futhark-opencl, futhark-py, and
futhark-pyopencl.

2.2.1 General Concerns

Futhark entry points are mapped to some form of function or method in the target language. Generally, an entry point
taking n parameters will result in a function taking n parameters. Extra parameters may be added to pass in context
data, or out-parameters for writing the result, for target languages that do not support multiple return values from
functions.

Not all Futhark types can be mapped cleanly to the target language. Arrays of tuples are the most common case. In
such cases, opaque types are used in the generated code. Values of these types cannot be directly inspected, but can be
passed back to Futhark entry points.

2.2.2 Generating C

A Futhark program futlib.fut can be compiled to reusable C code using either:

$ futhark-c --library futlib.fut

Or:

$ futhark-c --library futlib.fut

This produces two files in the current directory: futlib.c and futlib.h. If we wish (and are on a Unix system),
we can then compile futlib.c to a shared library like this:

$ gcc dotprod.c -o libdotprod.so -fPIC -shared

However, details of how to link the generated code with other C code is highly system-dependent, and outside the
scope of this manual.

The generated header file (here, futlib.h) specifies the API, and is intended to be human-readable. The basic
usages revolves around creating a configuration object, which can then be used to obtain a context object, which must
be passed whenever entry points are call.ed

The configuration object is created using the following function:

struct futhark_context_config *futhark_context_config_new();

Depending on the backend, various functions are generated to modify the configuration. The following is always
available:

void futhark_context_config_set_debugging(struct futhark_context_config *cfg,
int flag);

A configuration object can be used to create a context with the following function:

struct futhark_context *futhark_context_new(struct futhark_context_config *cfg);

2.2. Compiling to Library 9

Futhark Documentation, Release 0.3.1

Memory management is entirely manual. Deallocation functions are provided for all types defined in the header file.
Everything returned by an entry point must be manually deallocated.

2.2.3 Generating Python

The futhark-py and futhark-pyopencl compilers both support generating reusable Python code, although
the latter of these generates code of sufficient performance to be worthwhile. The following mentions options and
parameters only available for futhark-pyopencl. You will need at least PyOpenCL version 2015.2.

We can use futhark-pyopencl to translate the program futlib.fut into a Python module futlib.py with
the following command:

$ futhark-pyopencl --library futlib.fut

This will create a file futlib.py, which contains Python code that defines a class named futlib. This class
defines one method for each entry point function (see Entry Points) in the Futhark program. The methods take one
parameter for each parameter in the corresponding entry point, and return a tuple containing a value for every value
returned by the entry point. For entry points returning a single (non-tuple) value, just that value is returned (that is,
single-element tuples are not returned).

After the class has been instantiated, these methods can be invoked to run the corresponding Futhark function. The
constructor for the class takes various keyword parameters:

interactive=BOOL

If True (the default is False), show a menu of available OpenCL platforms and devices, and
use the one chosen by the user.

platform_pref=STR

Use the first platform that contains the given string. Similar to the -p option for executables.

device_pref=STR

Use the first device that contains the given string. Similar to the -d option for executables.

Futhark arrays are mapped to either the Numpy ndarray type or the `pyopencl.array <https://documen.tician.
de/pyopencl/array.html>_‘ type. Scalars are mapped to Numpy scalar types.

10 Chapter 2. Basic Usage

https://documen.tician.de/pyopencl/array.html
https://documen.tician.de/pyopencl/array.html

CHAPTER 3

Language Reference

This reference seeks to describe every construct in the Futhark language. It is not presented in a tutorial fashion, but
rather intended for quick lookup and documentation of subtleties. For this reason, it is not written in a bottom-up
manner, and some concepts may be used before they are fully defined. It is a good idea to have a basic grasp of
Futhark (or some other functional programming language) before reading this reference. An ambiguous grammar is
given for the full language. The text describes how ambiguities are resolved in practice (for example by applying rules
of operator precedence).

This reference describes only the language itself. Documentation for the basis library is available elsewhere.

3.1 Identifiers and Keywords

id ::= letter (letter | "_" | "'")* | "_" id
quals ::= (id ".")+
qualid ::= id | quals id
binop ::= opstartchar opchar*
qualbinop ::= binop | quals binop
fieldid ::= decimal | id

Many things in Futhark are named. When we are defining something, we give it an unqualified name (id). When
referencing something inside a module, we use a qualified name (qualid). The fields of a record are named with
fieldid. Note that a fieldid can be a decimal number. Futhark has three distinct name spaces: terms, module types, and
types. Modules (including parametric modules) and values both share the term namespace.

3.2 Primitive Types and Values

literal ::= intnumber | floatnumber | "true" | "false"

Boolean literals are written true and false. The primitive types in Futhark are the signed integer types i8, i16,

11

https://futhark-lang.org/docs/

Futhark Documentation, Release 0.3.1

i32, i64, the unsigned integer types u8, u16, u32, u64, the floating-point types f32, f64, as well as bool. An
f32 is always a single-precision float and a f64 is a double-precision float.

int_type ::= "i8" | "i16" | "i32" | "i64" | "u8" | "u16" | "u32" | "u64"
float_type ::= "f8" | "f16" | "f32" | "f64"

Numeric literals can be suffixed with their intended type. For example 42i8 is of type i8, and 1337e2f64 is of
type f64. If no suffix is given, integer literals are of type i32, and decimal literals are of type f64. Hexadecimal
literals are supported by prefixing with 0x, and binary literals by prefixing with 0b.

Floats can also be written in hexadecimal format such as 0x1.fp3, instead of the usual decimal notation. Here,
0x1.f evaluates to 1 15/16 and the p3 multiplies it by 2^3 = 8.

intnumber ::= (decimal | hexadecimal | binary) [int_type]
decimal ::= decdigit (decdigit |"_")*
hexadecimal ::= 0 ("x" | "X") hexdigit (hexdigit |"_")*
binary ::= 0 ("b" | "B") bindigit (bindigit | "_")*

floatnumber ::= (pointfloat | exponentfloat) [float_type]
pointfloat ::= [intpart] fraction
exponentfloat ::= (intpart | pointfloat) exponent
hexadecimalfloat ::= 0 ("x" | "X") hexintpart hexfraction ("p"|"P") ["+" | "-"] decdigit+
intpart ::= decdigit (decdigit |"_")*
fraction ::= "." decdigit (decdigit |"_")*
hexintpart ::= hexdigit (hexdigit | "_")*
hexfraction ::= "." hexdigit (hexdigit |"_")*
exponent ::= ("e" | "E") ["+" | "-"] decdigit+

decdigit ::= "0"..."9"
hexdigit ::= decdigit | "a"..."f" | "A"..."F"
bindigit ::= "0" | "1"

3.2.1 Compound Types and Values

All primitive values can be combined in tuples and arrays. A tuple value or type is written as a sequence of comma-
separated values or types enclosed in parentheses. For example, (0, 1) is a tuple value of type (i32,i32). The
elements of a tuple need not have the same type – the value (false, 1, 2.0) is of type (bool, i32, f64).
A tuple element can also be another tuple, as in ((1,2),(3,4)), which is of type ((i32,i32),(i32,i32)).
A tuple cannot have just one element, but empty tuples are permitted, although they are not very useful-these are
written () and are of type ().

type ::= qualid | array_type | tuple_type | record_type | type type_arg
array_type ::= "[" [dim] "]" type
tuple_type ::= "(" ")" | "(" type ("[" "," type "]")* ")"
record_type ::= "{" "}" | "{" fieldid ":" type ("," fieldid ":" type)* "}"
type_arg ::= "[" [dim] "]" | type
dim ::= qualid | decimal

12 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

An array value is written as a nonempty sequence of comma-separated values enclosed in square brackets: [1,2,3].
An array type is written as [d]t, where t is the element type of the array, and d is an integer indicating the size. We
typically elide d, in which case the size will be inferred. As an example, an array of three integers could be written as
[1,2,3], and has type [3]i32. An empty array is written as empty(t), where t is the element type.

Multi-dimensional arrays are supported in Futhark, but they must be regular, meaning that all inner arrays must have
the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type [3][2]i32, but [[1,2],
[3,4,5], [6,7]] is not, because there we cannot come up with integers m and n such that [m][n]i32 describes
the array. The restriction to regular arrays is rooted in low-level concerns about efficient compilation. However, we
can understand it in language terms by the inability to write a type with consistent dimension sizes for an irregular
array value. In a Futhark program, all array values, including intermediate (unnamed) arrays, must be typeable.

Records are mappings from field names to values, with the field names known statically. A tuple behaves in all respects
like a record with numeric field names, and vice versa. It is an error for a record type to name the same field twice.

A parametric type abbreviation can be applied by juxtaposing its name and its arguments. The application must provide
as many arguments as the type abbreviation has parameters - partial application is presently not allowed. See Type
Abbreviations for further details.

String literals are supported, but only as syntactic sugar for arrays of i32 values. There is no char type in Futhark.

stringlit ::= '"' stringchar '"'
stringchar ::= <any source character except "\" or newline or quotes>

3.3 Expressions

Expressions are the basic construct of any Futhark program. An expression has a statically determined type, and
produces a value at runtime. Futhark is an eager/strict language (“call by value”).

The basic elements of expressions are called atoms, for example literals and variables, but also more complicated
forms.

atom ::= literal
| qualid ("." fieldid)*
| stringlit
| "empty" "(" type ")"
| "(" ")"
| "(" exp ")" ("." fieldid)*
| "(" exp ("," exp)* ")"
| "{" "}"
| "{" field ("," field)* "}"
| qualid "[" index ("," index)* "]"
| "(" exp ")" "[" index ("," index)* "]"
| quals."(" exp ")"
| "[" exp ("," exp)* "]"
| "[" exp [".." exp] "..." exp "]"
| "(" qualid atom+ ")"
| "(" qualbinop ")"
| "(" exp qualbinop ")"
| "(" qualbinop exp ")"

exp ::= atom
| exp qualbinop exp

3.3. Expressions 13

Futhark Documentation, Release 0.3.1

| exp exp
| exp ":" type
| exp [".." exp] "..." exp
| exp [".." exp] "..<" exp
| exp [".." exp] "..>" exp
| "if" exp "then" exp "else" exp
| "let" type_param* pat "=" exp "in" exp
| "let" id "[" index ("," index)* "]" "=" exp "in" exp
| "let" id type_param* pat+ [":" type] "=" exp "in" exp
| "(" "\" type_param* pat+ [":" type] "->" exp ")"
| "loop" type_param* pat [("=" exp)] loopform "do" exp
| "reshape" exp exp
| "rearrange" "(" nat_int+ ")" exp
| "rotate" ["@" nat_int] exp exp
| "concat" ["@" nat_int] exp+
| "zip" ["@" nat_int] exp+
| "unzip" exp
| "unsafe" exp
| exp "with" "[" index ("," index)* "]" "<-" exp
| "map" fun exp+
| "reduce" fun exp exp
| "reduce_comm" fun exp exp
| "scan" fun exp exp
| "filter" fun exp
| "partition" "(" fun+ ")" exp
| "stream_map" fun exp
| "stream_map_per" fun exp
| "stream_red" fun exp exp
| "stream_red_per" fun exp exp
| "stream_seq" fun exp exp

field ::= fieldid "=" exp
| id

pat ::= id
| "_"
| "(" ")"
| "(" pat ")"
| "(" pat ("," pat)+ ")"
| "{" "}"
| "{" fieldid "=" pat ["," fieldid "=" pat] "}"
| pat ":" type

loopform ::= "for" id "<" exp
| "for" pat "in" exp
| "while" exp

index ::= exp [":" [exp]] [":" [exp]]
| [exp] ":" exp [":" [exp]]
| [exp] [":" exp] ":" [exp]

nat_int ::= decdigit+

Some of the built-in expression forms have parallel semantics, but it is not guaranteed that the the parallel constructs
in Futhark are evaluated in parallel, especially if they are nested in complicated ways. Their purpose is to give the
compiler as much freedom and information is possible, in order to enable it to maximise the efficiency of the generated
code.

14 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

3.3.1 Resolving Ambiguities

The above grammar contains some ambiguities, which in the concrete implementation is resolved via a combination
of lexer and grammar transformations. For ease of understanding, they are presented here in natural text.

• An expression x.y may either be a reference to the name y in the module x, or the field y in the record x.
Modules and values occupy the same name space, so this is disambiguated by the type of x.

• A type ascription (exp : type) cannot appear as an array index, as it conflicts with the syntax for slicing.

• In f [x], there is am ambiguity between indexing the array f at position x, or calling the function f with the
singleton array x. We resolve this the following way:

– If there is a space between f and the opening bracket, it is treated as a function application.

– Otherwise, it is an array index operation.

• An expression (-x) is parsed as the variable x negated and enclosed in parentheses, rather than an operator
section partially applying the infix operator -.

• The following table describes the precedence and associativity of infix operators. All operators in the same row
have the same precedence. The rows are listed in increasing order of precedence. Note that not all operators
listed here are used in expressions; nevertheless, they are still used for resolving ambiguities.

Associativity Operators
left ,
left :
left ||
left &&
left <= >= > < == !=
left & ^ |
left << >> >>>
left + -
left * / % // %%
right ->
left juxtaposition

3.3.2 Semantics of Simple Expressions

literal

Evaluates to itself.

qualid

A variable name; evaluates to its value in the current environment.

stringlit

Evaluates to an array of type []i32 that contains the string characters as integers.

3.3. Expressions 15

Futhark Documentation, Release 0.3.1

empty(t)

Create an empty array whose row type is t. For example, empty(i32) creates a value of type []i32. The row
type can contain shape declarations, e.g., empty([2]i32). Any dimension without an annotation will be of size 0,
as will the outermost dimension.

()

Evaluates to an empty tuple.

(e)

Evaluates to the result of e.

(e1, e2, ..., eN)

Evaluates to a tuple containing N values. Equivalent to (1=e1, 2=e2, ..., N=eN).

{f1, f2, ..., fN}

A record expression consists of a comma-separated sequence of field expressions. Each field expression defines the
value of a field in the record. A field expression can take one of two forms:

f = e: defines a field with the name f and the value resulting from evaluating e.

f: defines a field with the name f and the value of the variable f in scope.

Each field may only be defined once.

a[i]

Return the element at the given position in the array. The index may be a comma-separated list of indexes instead of
just a single index. If the number of indices given is less than the rank of the array, an array is returned.

The array a must be a variable name or a parenthesized expression. Futhermore, there may not be a space between a
and the opening bracket. This disambiguates the array indexing a[i], from a [i], which is a function call with a
literal array.

a[i:j:s]

Return a slice of the array a from index i to j, the latter inclusive and the latter exclusive, taking every s-th element.
The s parameter may not be zero. If s is negative, it means to start at i and descend by steps of size s to j (not
inclusive).

It is generally a bad idea for s to be non-constant. Slicing of multiple dimensions can be done by separating with
commas, and may be intermixed freely with indexing.

If s is elided it defaults to 1. If i or j is elided, their value depends on the sign of s. If s is positive, i become 0 and
j become the length of the array. If s is negative, i becomes the length of the array minus one, and j becomes minus
one. This means that a[::-1] is the reverse of the array a.

16 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

[x, y, z]

Create an array containing the indicated elements. Each element must have the same type and shape. At least one
element must be provided - empty arrays must be constructed with the empty construct. This restriction is due to
limited type inference in the Futhark compiler, and will hopefully be fixed in the future.

x..y...z

Construct an integer array whose first element is x and which proceeds stride of y-x until reaching z (inclusive). The
..y part can be elided in which case a stride of 1 is used. The stride may not be zero. An empty array is returned in
cases where z would never be reached or x and y are the same value.

x..y..<z

Construct an integer array whose first elements is x, and which proceeds upwards with a stride of y until reaching z
(exclusive). The ..y part can be elided in which case a stride of 1 is used. An empty array is returned in cases where
z would never be reached or x and y are the same value.

x..y..>z

Construct an integer array whose first elements is x, and which proceeds downwards with a stride of y until reaching
z (exclusive). The ..y part can be elided in which case a stride of -1 is used. An empty array is returned in cases
where z would never be reached or x and y are the same value.

e.f

Access field f of the expression e, which must be a record or tuple.

m.(e)

Evaluate the expression e with the module m locally opened, as if by open. This can make some expressions easier
to read and write, without polluting the global scope with a declaration-level open.

x binop y

Apply an operator to x and y. Operators are functions like any other, and can be user-defined. Futhark pre-defines
certain “magical” overloaded operators that work on many different types. Overloaded functions cannot be defined by
the user. Both operands must have the same type. The predefined operators and their semantics are:

**

Power operator, defined for all numeric types.

//, %%

Division and remainder on integers, with rounding towards zero.

*, /, %, +, -

The usual arithmetic operators, defined for all numeric types. Note that / and % rounds towards
negative infinity when used on integers - this is different from in C.

^, &, |, >>, <<, >>>

3.3. Expressions 17

Futhark Documentation, Release 0.3.1

Bitwise operators, respectively bitwise xor, and, or, arithmetic shift right and left, and logical
shift right. Shift amounts must be non-negative and the operands must be integers. Note that,
unlike in C, bitwise operators have higher priority than arithmetic operators. This means that
x & y == z is understood as (x & y) == z, rather than x & (y == z) as it would
in C. Note that the latter is a type error in Futhark anyhow.

==, !=

Compare any two values of builtin or compound type for equality.

<, <=. >, >=

Company any two values of numeric type for equality.

x && y

Short-circuiting logical conjunction; both operands must be of type bool.

x || y

Short-circuiting logical disjunction; both operands must be of type bool.

f x

Apply the function f to the argument x.

e : t

Annotate that e is expected to be of type t, failing with a type error if it is not. If t is an array with shape declarations,
the correctness of the shape declarations is checked at run-time.

Due to ambiguities, this syntactic form cannot appear as an array index expression unless it is first enclosed in paren-
theses.

! x

Logical negation of x, which must be of type bool.

- x

Numerical negation of x, which must be of numeric type.

. x

Bitwise negation of x, which must be of integral type.

reshape (d_1, ..., d_n) a

Reshape the elements of a into an n-dimensional array of the specified shape. The number of elements in a must be
equal to the product of the new dimensions.

18 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

rearrange (d_1, ..., d_n) a

Permute the dimensions in the array, returning a new array. The d_i must be static integers, and constitute a proper
length-n permutation.

For example, if b==rearrange (2,0,1) a, then b[x,y,z] = a[y,z,x].

rotate@d i a

Rotate dimension d of the array a left by i elements. Intuitively, you can think of it as subtracting i from every index
(modulo the size of the array).

For example, if b==rotate 1 i a, then b[x,y+1] = a[x,y].

concat a_1 ..., a_n

Concatenate the rows/elements of several arrays. The shape of the arrays must be identical in all but the first dimension.
This is equivalent to concat@0 (see below).

concat@i a_1 ... a_n

Concatenate arrays across dimension i, with the outermost dimension being 0. The i must be a compile-time integer
constant, i.e. i cannot be a variable.

zip x y z

Zips together the elements of the outer dimensions of arrays x, y, and z. Static or runtime check is performed to
check that the sizes of the outermost dimension of the arrays are the same. If this property is not true, program
execution stops with an error. Any number of arrays may be passed to unzip. If n arrays are given, the result will be
a single-dimensional array of n-tuples (where the the tuple components may themselves be arrays).

zip@i x y z

Like zip, but operates within i+1 dimensions. Thus, zip@0 is equivalent to unadorned zip. This form is useful
when zipping multidimensional arrays along the innermost dimensions.

unzip a

If the type of a is [(t_1, ..., t_n)], the result is a tuple of n arrays, i.e., ([t_1], ..., [t_n]), and
otherwise a type error.

unsafe e

Elide safety checks (such as bounds checking) for operations lexically with e. This is useful if the compiler is other-
wise unable to avoid bounds checks (e.g. when using indirect indexes), but you really do not want them here.

a with [i] <- e

Return a, but with the element at position i changed to contain the result of evaluating e. Consumes a.

3.3. Expressions 19

Futhark Documentation, Release 0.3.1

scatter as is vs

This scatter expression calculates the equivalent of this imperative code:

for index in 0..length is-1:
i = is[index]
v = vs[index]
as[i] = v

The is and vs arrays must have the same outer size. scatter acts in-place and consumes the as array, returning
a new array that has the same type and elements as as, except for the indices in is. If is contains duplicates (i.e.
several writes are performed to the same location), the result is unspecified. It is not guaranteed that one of the
duplicate writes will complete atomically - they may be interleaved.

if c then a else b

If c evaluates to True, evaluate a, else evaluate b.

3.3.3 Binding Expressions

let pat = e in body

Evaluate e and bind the result to the pattern pat while evaluating body. The in keyword is optional if body is a
let expression. See also Shape Declarations.

let a[i] = v in body

Write v to a[i] and evaluate body. The given index need not be complete and can also be a slice, but in these cases,
the value of v must be an array of the proper size. Syntactic sugar for let a = a with [i] <- v in a.

let f params... = e in body

Bind f to a function with the given parameters and definition (e) and evaluate body. The function will be treated as
aliasing any free variables in e. The function is not in scope of itself, and hence cannot be recursive. See also Shape
Declarations.

loop pat = initial for x in a do loopbody

1. Bind pat to the initial values given in initial.

2. For each element x in a, evaluate loopbody and rebind pat to the result of the evaluation.

3. Return the final value of pat.

The = initial can be left out, in which case initial values for the pattern are taken from equivalently named
variables in the environment. I.e., loop (x) = ... is equivalent to loop (x = x) =

See also Shape Declarations.

loop pat = initial for x < n do loopbody

Equivalent to loop (pat = initial) for x in [0..1..<n] do loopbody.

20 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

loop pat = initial = while cond do loopbody

1. Bind pat to the initial values given in initial.

2. If cond evaluates to true, bind pat to the result of evaluating loopbody, and repeat the step.

3. Return the final value of pat.

See also Shape Declarations.

3.3.4 SOACs

map f a_1 ... a_n

Apply f to every element of a_1 ... a_n and return the resulting array. Differs from map f (zip a_1 ...
a_n) in that f is called with n arguments, where in the latter case it is called with a single n-tuple argument. In other
languages, this form of map is often called zipWith.

reduce f x a

Left-reduction with f across the elements of a, with x as the neutral element for f. The function fmust be associative.
If it is not, the return value is unspecified.

reduce_comm f x a

Like reduce, but with the added guarantee that the function f is commutative. This lets the compiler generate
more efficient code. If f is not commutative, the return value is unspecified. You do not need to explicitly use
reduce_comm with built-in operators like + - the compiler already knows that these are commutative.

scan f x a

Inclusive prefix scan. Has the same caveats with respect to associativity as reduce.

filter f a

Remove all those elements of a that do not satisfy the predicate f.

partition (f_1, ..., f_n) a

Divide the array a into disjoint partitions based on the given predicates. Each element of a is called with the predicates
f_1 to f_n in sequence, and as soon as one as one of them returns True, the element is added to the corresponding
partition. If none of the functions return True, the element is added to a catch-all partition that is returned last.
Always returns a tuple with n+1 components. The partitioning is stable, meaning that elements of the partitions retain
their original relative positions.

3.3. Expressions 21

Futhark Documentation, Release 0.3.1

3.4 Shape Declarations

Whenever a pattern occurs (in let, loop, and function parameters), as well as in return types, shape declarations
may be used to express invariants about the shapes of arrays that are accepted or produced by the function. For
example:

let f [n] (a: [n]i32) (b: [n]i32): [n]i32 =
map (+) a b

We use a shape parameter, [n], to explicitly quantify the names of shapes. The [n] parameter need not be explicitly
passed when calling f. Rather, its value is implicitly deduced from the arguments passed for the value parameters.
Any size parameter must be used in a value parameter. This is an error:

let f [n] (x: i32) = n

A shape declaration can also be an integer constant (with no suffix). The dimension names bound can be used as
ordinary variables within the scope of the parameters. If a function is called with arguments, or returns a value, that
does not fulfill the shape constraints, the program will fail with a runtime error. Likewise, if a pattern with shape
declarations is attempted bound to a value that does not fulfill the invariants, the program will fail with a runtime error.
For example, this will fail:

let x: [3]i32 = iota 2

While this will succeed and bind n to 2:

let [n] x: [n]i32 = iota 2

3.4.1 Function Expressions

\x y z: t -> e

Produces an anonymous function taking parameters x, y, and z, returns type t, and whose body is e.

(*binop*)

An operator section that is equivalent to \x y -> x *binop* y.

(x *binop*)

An operator section that is equivalent to \y -> x *binop* y.

(*binop* y)

An operator section that is equivalent to \x -> x *binop* y.

3.5 Declarations

dec ::= fun_bind | val_bind | type_bind | mod_bind | mod_type_bind

22 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

| "open" mod_exp
| default_dec
| "import" stringlit

3.5.1 Declaring Functions and Values

fun_bind ::= ("let" | "entry") id type_param* pat+ [":" type] "=" exp
| ("let" | "entry") pat binop pat [":" type] "=" exp

val_bind ::= "let" id [":" type] "=" exp

Functions and values must be defined before they are used. A function declaration must specify the name, parameters,
return type, and body of the function:

let name params...: rettype = body

Type inference is not supported, and functions are fully monomorphic. A parameter is written as (name: type).
Functions may not be recursive. Optionally, the programmer may put shape declarations in the return type and
parameter types; see Shape Declarations. A function can be polymorphic by using type parameters, in the same way
as for Type Abbreviations:

let reverse [n] 't (xs: [n]t): [n]t = xs[::-1]

Shape and type parameters are not passed explicitly when calling function, but are automatically derived.

3.5.2 User-Defined Operators

Infix operators are defined much like functions:

let (p1: t1) op (p2: t2): rt = ...

For example:

let (a:i32,b:i32) +^ (c:i32,d:i32) = (a+c, b+d)

A valid operator name is a non-empty sequence of characters chosen from the string "+-*/%=!><&^". The fixity
of an operator is determined by its first characters, which must correspond to a built-in operator. Thus, +^ binds like
+, whilst *^ binds like *. The longest such prefix is used to determine fixity, so >>= binds like >>, not like >.

It is not permitted to define operators with the names && or || (although these as prefixes are accepted). This is
because a user-defined version of these operators would not be short-circuiting. User-defined operators behave exactly
like functions, except for syntactically.

A built-in operator can be shadowed (i.e. a new + can be defined). This will result in the built-in polymorphic operator
becoming inaccessible, except through the Intrinsics module.

Entry Points

Apart from declaring a function with the keyword fun, it can also be declared with entry. When the Futhark
program is compiled any function declared with entry will be exposed as an entry point. If the Futhark program has
been compiled as a library, these are the functions that will be exposed. If compiled as an executable, you can use the
--entry-point command line option of the generated executable to select the entry point you wish to run.

3.5. Declarations 23

Futhark Documentation, Release 0.3.1

Any function named main will always be considered an entry point, whether it is declared with entry or not.

Value Declarations

A named value/constant can be declared as follows:

let name: type = definition

The definition can be an arbitrary expression, including function calls and other values, although they must be in scope
before the value is defined. The type annotation can be elided if the value is defined before it is used.

Values can be used in shape declarations, except in the return value of entry points.

3.5.3 Type Abbreviations

type_bind ::= "type" id type_param* "=" type
type_param ::= "[" id "]" | "'" id

Type abbreviations function as shorthands for purpose of documentation or brevity. After a type binding type t1
= t2, the name t1 can be used as a shorthand for the type t2. Type abbreviations do not create new unique types.
After the previous binding, the types t1 and t2 are entirely interchangeable.

A type abbreviation can have zero or more parameters. A type parameter enclosed with square brackets is a shape
parameter, and can be used in the definition as an array dimension size, or as a dimension argument to other type
abbreviations. When passing an argument for a shape parameter, it must be encloses in square brackets. Example:

type two_intvecs [n] = ([n]i32, [n]i32)

let (a,b): two_intvecs [2] = (iota 2, replicate 2 0)

Shape parameters work much like shape declarations for arrays. Like shape declarations, they can be elided via square
brackets containing nothing.

A type parameter prefixed with a single quote is a type parameter. It is in scope as a type in the definition of the type
abbreviation. Whenever the type abbreviation is used in a type expression, a type argument must be passed for the
parameter. Type arguments need not be prefixed with single quotes:

type two_vecs [n] 't = ([n]t, [n]t)
type two_intvecs [n] = two_vecs [n] i32
let (a,b): two_vecs [2] i32 = (iota 2, replicate 2 0)

When using uniqueness attributes with type abbreviations, inner uniqueness attributes are overrided by outer ones:

type unique_ints = *[]i32
type nonunique_int_lists = []unique_ints
type unique_int_lists = *nonunique_int_lists

-- Error: using non-unique value for a unique return value.
let f (p: nonunique_int_lists): unique_int_lists = p

3.6 Module System

24 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

mod_bind ::= "module" id mod_param+ "=" [":" mod_type_exp] "=" mod_exp
mod_param ::= "(" id ":" mod_type_exp ")"
mod_type_bind ::= "module" "type" id type_param* "=" mod_type_exp

Futhark supports an ML-style higher-order module system. Modules can contain types, functions, and other modules.
Module types are used to classify the contents of modules, and parametric modules are used to abstract over modules
(essentially module-level functions). In Standard ML, modules, module types and parametric modules are called
structs, signatures, and functors, respectively.

Named modules are declared as:

module name = module expression

A named module type is defined as:

module type name = module type expression

Where a module expression can be the name of another module, an application of a parametric module, or a sequence
of declarations enclosed in curly braces:

module Vec3 = {
type t = (f32 , f32 , f32)
let add(a: t) (b: t): t =
let (a1, a2, a3) = a in
let (b1, b2, b3) = b in
(a1 + b1, a2 + b2 , a3 + b3)

}

module AlsoVec3 = Vec3

Functions and types within modules can be accessed using dot notation:

type vector = Vec3.t
let double(v: vector): vector = Vec3.add v v

We can also use open Vec3 to bring the names defined by Vec3 into the current scope. Multiple modules can be
opened simultaneously by separating their names with spaces. In case several modules define the same names, the
ones mentioned last take precedence. The first argument to open may be a full module expression.

Named module types are defined as:

module type ModuleTypeName = module type expression

A module type expression can be the name of another module type, or a sequence of specifications, or specs, enclosed
in curly braces. A spec can be a value spec, indicating the presence of a function or value, an abstract type spec, or a
type abbreviation spec. For example:

module type Addable = {
type t -- abstract type spec
type two_ts = (t,t) -- type abbreviation spec
val add: t -> t -> t -- value spec

}

This module type specifies the presence of an abstract type t, as well as a function operating on values of type t. We
can use module type ascription to restrict a module to what is exposed by some module type:

module AbstractVec = Vec3 : Addable

3.6. Module System 25

Futhark Documentation, Release 0.3.1

The definition of AbstractVec.t is now hidden. In fact, with this module type, we can neither construct values of
type AbstractVec.T or convert them to anything else, making this a rather useless use of abstraction. As a derived
form, we can write module M: S = e to mean module M = e : S.

Parametric modules allow us to write definitions that abstract over modules. For example:

module Times(M: Addable) = {
let times (x: M.t) (k: int): M.t =
loop (x' = x) for i < k do

T.add x' x
}

We can instantiate Times with any module that fulfills the module type Addable and get back a module that defines
a function times:

module Vec3Times = Times(Vec3)

Now Vec3Times.times is a function of type Vec3.t -> int -> Vec3.t.

3.6.1 Module Expressions

mod_exp ::= qualid
| mod_exp ":" mod_type_exp
| "\" "(" id ":" mod_type_exp ")" [":" mod_type_exp] "=" mod_exp
| mod_exp mod_exp
| "(" mod_exp ")"
| "{" dec* "}"
| "import" stringlit

3.6.2 Module Type Expressions

mod_type_exp ::= qualid
| "{" spec* "}"
| mod_type_exp "with" qualid "=" type
| "(" mod_type_exp ")"
| "(" id ":" mod_type_exp ")" "->" mod_type_exp
| mod_type_exp "->" mod_type_exp

spec ::= "val" id type_param* ":" spec_type
| "val" binop ":" spec_type
| "type" id type_param* "=" type
| "type id type_param*
| "module" id ":" mod_type_exp
| "include" mod_type_exp

spec_type ::= type | type "->" spec_type

26 Chapter 3. Language Reference

Futhark Documentation, Release 0.3.1

3.7 Referring to Other Files

You can refer to external files in a Futhark file like this:

import "module"

The above will include all top-level definitions from module.fut is and make them available in the current Futhark
program. The .fut extension is implied.

You can also include files from subdirectories:

include "path/to/a/file"

The above will include the file path/to/a/file.fut. When importing a nonlocal file (such as the standard
library or the compiler search path), the path must begin with a forward slash.

Qualified imports are also possible, where a module is created for the file:

module M = import "module"

3.8 Literal Defaults

default_dec ::= "default" (int_type)
| "default" (float_type)
| "default" (int_type, float_type)

By default, Futhark interprets integer literals as i32 values, and decimal literals (integer literals containing a decimal
point) as f64 values. These defaults can be changed using the Haskell-inspired default keyword.

To change the i32 default to e.g. i64, type the following at the top of your file:

default(i64)

To change the f64 default to f32, type the following at the top of your file:

default(f32)

To change both, type:

default(i64,f32)

3.8. Literal Defaults 27

https://wiki.haskell.org/Keywords#default

Futhark Documentation, Release 0.3.1

28 Chapter 3. Language Reference

CHAPTER 4

C Porting Guide

This short document contains a collection of tips and tricks for porting simple numerical C code to futhark. Futhark’s
sequential fragment is powerful enough to permit a rather straightforward translation of sequential C code that does
not rely on pointer mutation. Additionally, we provide hints on how to recognise C coding patterns that are symptoms
of C’s weak type system, and how better to organise it in Futhark.

One intended audience of this document is a programmer who needs to translate a benchmark application written in
C, or needs to use a simple numerical algorithm that is already available in the form of C source code.

4.1 Where This Guide Falls Short

Some C code makes use of unstructured returns and nonlocal exits (return inside loops, for example). These are not
easy to express in Futhark, and will require massaging the control flow a bit. C code that uses goto is likewise not
easy to port.

4.2 Types

Futhark provides scalar types that match the ones commonly used in C: u8/u16/u32/u64 for the unsigned integers,
i8/i16/i32/i64 for the signed, and f32/f64 for float and double respectively. In contrast to C, Futhark does
not automatically promote types in expressions - you will have to manually make sure that both operands to e.g. a
multiplication are of the exact same type. This means that you will need to understand exactly which types a given
expression in original C program operates on, which generally boils down to converting the type of the (type-wise)
smaller operand to that of the larger. Note that the Futhark bool type is not considered a number.

4.3 Operators

Most of the C operators can be found in Futhark with their usual names. Note however that the Futhark / and %
operators for integers round towards negative infinity, whereas their counterparts in C round towards zero. You can

29

Futhark Documentation, Release 0.3.1

write // and %% if you want the C behaviour. There is no difference if both operands are non-zero, but // and %%
may be slightly faster. For unsigned numbers, they are exactly the same.

4.4 Variable Mutation

As a sequential language, most C programs quite obviously rely heavily on mutating variables. However, in many
programs, this is done in a static manner without indirection through pointers (except for arrays; see below), which is
conceptually similar to just declaring a new variable of the same name that shadows the old one. If this is the case, a
C assignment can generally be translated to just a let-binding. As an example, let us consider the following function
for computing the modular multiplicative inverse of a 16-bit unsigned integer (part of the IDEA encryption algorithm):

static uint16_t ideaInv(uint16_t a) {
uint32_t b;
uint32_t q;
uint32_t r;
int32_t t;
int32_t u;
int32_t v;

b = 0x10001;
u = 0;
v = 1;

while(a > 0)
{

q = b / a;
r = b % a;

b = a;
a = r;

t = v;
v = u - q * v;
u = t;

}

if(u < 0)
u += 0x10001;

return u;
}

Each iteration of the loop mutates the variables a, b, v, and u in ways that are visible to the following iteration.
Conversely, the “mutations” of q, r, and t are not truly mutations, and the variable declarations could be moved
inside the loop if we wished. Presumably, the C programmer left them outside for aesthetic reasons. When translating
such code, it is important to determine exactly how much true mutation is going on, and how much is just reuse of
variable space. This can usually be done by checking whether a variable is read before it is written in any given
iteration - if not, then it is not true mutation. The variables that change value from one iteration of the loop to the next
will need to be maintained as merge parameters of the Futhark do-loop.

The Futhark program resulting from a straightforward port looks as follows:

let main(a: u16): u32 =
let b = 0x10001u32
let u = 0i32

(continues on next page)

30 Chapter 4. C Porting Guide

Futhark Documentation, Release 0.3.1

(continued from previous page)

let v = 1i32 in
let (_,_,u,_) = loop ((a,b,u,v)) while a > 0u16 do
let q = b / u32.u16(a)
let r = b % u32.u16(a)

let b = u32.u16(a)
let a = u16.u32(r)

let t = v
let v = u - i32.u32 (q) * v
let u = t in
(a,b,u,v)

in u32.i32(if u < 0 then u + 0x10001 else u)

Note the heavy use of type conversion and type suffixes for constants. This is necessary due to Futhark’s lack of
implicit conversions. Note also the conspicuous way in which the do-loop is written - the result of a loop iteration
consists of variables whose names are identical to those of the merge parameters.

This program can still be massaged to make it more idiomatic Futhark - for example, the variable t only serves to store
the old value of v that is otherwise clobbered. This can be written more elegantly by simply inlining the expressions
in the result part of the loop body.

4.5 Arrays

Dynamically sized multidimensional arrays are somewhat awkward in C, and are often simulated via single-
dimensional arrays with explicitly calculated indices:

a[i * M + j] = foo;

This indicates a two-dimensional array a whose inner dimension is of size M. We can usually look at where a is
allocated to figure out what the size of the outer dimension must be:

a = malloc(N * M * sizeof(int));

We see clearly that a is a two-dimensional integer array of size N times M - or of type [N][M]i32 in Futhark. Thus,
the update expression above would be translated as:

let a[i,j] = foo in
...

C programs usually first allocate an array, then enter a loop to provide its initial values. This is not possible in Futhark
- consider whether you can write it as a replicate, an iota, or a map. In the worst case, use replicate to
obtain an array of the desired size, then use a do-loop with in-place updates to initialise it (but note that this will run
stricly sequentially).

4.5. Arrays 31

Futhark Documentation, Release 0.3.1

32 Chapter 4. C Porting Guide

CHAPTER 5

Hacking on the Futhark Compiler

The Futhark compiler is a significant body of code with a not entirely straightforward design. The main reference is the
documentation of the compiler internals that is automatically generated by Haddock. If you feel that it is incomplete,
or lacks an explanation, then feel free to report it is an an issue on the Github page. Documentation bugs are bugs too.

The Futhark compiler is built using Stack. It’s a good idea to familiarise yourself with how it works. As a starting
point, here are a few hints:

• To test with different GHC versions, point the STACK_YAML environment variable at another file. For example,
to build using the Stack LTS 1.15 snapshot (GHC 7.8), we would run:

$ STACK_YAML=stack-lts-1.15.yaml stack build

• When testing, pass --fast to stack to disable the GHC optimiser. This speeds up builds considerably
(although it still takes a while). The resulting Futhark compiler will run slower, but it is not something you will
notice for small test programs.

• When debugging, pass --profile to stack. This will build the Futhark compiler with debugging informa-
tion (not just profiling). In particular, hard crashes will print a stack trace. You can also get actual profiling
information by passing +RTS -pprof-all -RTS to the Futhark compiler. This asks the Haskell runtime to
print profiling information to a file. For more information, see the Profiling chapter in the GHC User Guide.

5.1 Debugging Internal Type Errors

The Futhark compiler uses a typed core language, and the type checker is run after every pass. If a given pass produces
a program with inconsistent typing, the compiler will report an error and abort. While not every compiler bug will
manifest itself as a core language type error (unfortunately), many will. To write the erroneous core program to a file
in case of type error, pass -v filename to the compiler. This will also enable verbose output, so you can tell which
pass fails. The -v option is also useful when the compiler itself crashes, as you can at least tell where in the pipeline
it got to.

33

https://futhark-lang.org/haddock/
https://github.com/HIPERFIT/futhark
https://docs.haskellstack.org/en/stable/README/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html

Futhark Documentation, Release 0.3.1

5.2 Checking Generated Code

Hacking on the compiler will often involve inspecting the quality of the generated code. The recommended way to
do this is to use futhark-c or futhark-opencl to compile a Futhark program to an executable. These backends insert
various forms of instrumentation that can be enabled by passing run-time options to the generated executable.

• As a first resort, use -t option to use the built-in runtime measurements. A nice trick is to pass -t /dev/
stderr, while redirecting standard output to /dev/null. This will print the runtime on the screen, but not
the execution result.

• Optionally use -r to ask for several runs, e.g. -r 10. If combined with -t, this will cause several runtimes to
be printed (one per line). The futhark-bench tool itself uses -t and -r to perform its measurements.

• Pass -D to have the program print information on allocation and deallocation of memory.

• (futhark-opencl only) Use the -D option to enable synchronous execution. clFinish() will be called after
most OpenCL operations, and a running log of kernel invocations will be printed. At the end of execution, the
program prints a table summarising all kernels and their total runtime and average runtime.

5.3 Using the futhark Tool

For debugging specific compiler passes, there is a tool simply called futhark, which allows you to tailor your own
compilation pipeline using command line options. It is also useful for seeing what the AST looks like after specific
passes.

34 Chapter 5. Hacking on the Futhark Compiler

CHAPTER 6

Binary Data Format

Futhark programs compiled to an executable support both textual and binary input. Both are read via standard input,
and can be mixed, such that one argument to an entry point may be binary, and another may be textual. The binary
input format takes up significantly less space on disk, and can be read much faster than the textual format. This chapter
describes the binary input format and its current limitations. The input formats (whether textual or binary) are not used
for Futhark programs compiled to libraries, which instead use whichever format is supported by their host language.

Currently reading binary input is only supported for programs generated by futhark-c/futhark-opencl, and
futhark-py/futhark-pyopencl. It is not supported for futharki.

You can generate random data in the binary format with futhark-dataset. This tool can also be used to convert between
binary and textual data.

Futhark-generated executables can be asked to generate binary output with the -b option.

6.1 Specification

Elements that are bigger than one byte are always stored using little endian – we mostly run our code on x86 hardware
so this seemed like a reasonable choice.

When reading input for an argument to the entry function, we need to be able to differentiate between text and binary
input. If the first non-whitespace character of the input is a b we will parse this argument as binary, otherwise we
will parse it in text format. Allowing preceding whitespace characters makes it easy to use binary input for some
arguments, and text input for others.

The general format has this header:

b <version> <num_dims> <type>

Where version is a byte containing the version of the binary format used for encoding (currently 2), num_dims is
the number of dimensions in the array as a single byte (0 for scalar), and type is a 4 character string describing the
type of the values(s) – see below for more details.

Encoding a scalar value is done by treating it as a 0-dimensional array:

35

Futhark Documentation, Release 0.3.1

b <version> 0 <type> <value>

To encode an array we must encode the number of dimensions n as a single byte, each dimension dim_i as an
unsigned 64-bit little endian integer, and finally all the values in their binary little endian representation:

b <version> <n> <type> <dim_1> <dim_2> ... <dim_n> <values>

6.1.1 Type Values

A type is identified by a 4 character ASCII string (four bytes). Valid types are:

" i8"
" i16"
" i32"
" i64"
" u8"
" u16"
" u32"
" u64"
" f32"
" f64"
"bool"

Note that unsigned and signed integers have the same byte-level representation.

36 Chapter 6. Binary Data Format

CHAPTER 7

futhark

7.1 SYNOPSIS

futhark [options. . .] infile

7.2 DESCRIPTION

This is a Futhark compiler development tool, intentionally undocumented and intended for use in developing the
Futhark compiler, not for programmers writing in Futhark. To compile Futhark code, use one of the compilers, e.g.
futhark-c or futhark-opencl.

For documentation on the Futhark language itself, see:

http://futhark.readthedocs.io

7.3 SEE ALSO

futhark-c(1), futhark-opencl(1)

37

Futhark Documentation, Release 0.3.1

38 Chapter 7. futhark

CHAPTER 8

futhark-c

8.1 SYNOPSIS

futhark-c [-V] [-o outfile] infile

8.2 DESCRIPTION

futhark-c translates a Futhark program to sequential C code, and either compiles that C code with gcc(1) to an
executable binary program, or produces a .h and .c file that can be linked with other code.. The standard Futhark
optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99.

The resulting program will read the arguments to the entry point (main by default) from standard input and print its
return value on standard output. The arguments are read and printed in Futhark syntax, just like futharki(1).

8.3 OPTIONS

-o outfile Where to write the result. If the source program is named ‘foo.fut’, this defaults
to ‘foo’.

--library Generate a library instead of an executable. Appends .c/.h to the name indi-
cated by the -o option to determine output file names.

-I dir, --import dir Add directory to the list of directories searched when locating imported files.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

39

Futhark Documentation, Release 0.3.1

8.4 SEE ALSO

futharki(1), futhark-test(1)

40 Chapter 8. futhark-c

CHAPTER 9

futhark-opencl

9.1 SYNOPSIS

futhark-opencl [-V] [-o outfile] infile

9.2 DESCRIPTION

futhark-opencl translates a Futhark program to C code invoking OpenCL kernels, and either compiles that C
code with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code.
The standard Futhark optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99. The
resulting program will otherwise behave exactly as one compiled with futhark-c.

9.3 OPTIONS

-o outfile Where to write the result. If the source program is named ‘foo.fut’, this defaults
to ‘foo’.

--library Generate a library instead of an executable. Appends .c/.h to the name indi-
cated by the -o option to determine output file names.

-I dir, --import dir Add directory to the list of directories searched when locating imported files.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

41

Futhark Documentation, Release 0.3.1

9.4 SEE ALSO

futharki(1), futhark-test(1), futhark-c(1)

42 Chapter 9. futhark-opencl

CHAPTER 10

futhark-py

10.1 SYNOPSIS

futhark-py [-V] [-o outfile] infile

10.2 DESCRIPTION

futhark-py translates a Futhark program to sequential Python code.

The resulting program will read the arguments to the main function from standard input and print its return value on
standard output. The arguments are read and printed in Futhark syntax, just like futharki(1).

The generated code is very slow, likely too much to be useful. It is more interesting to use this command’s big brother,
futhark-pyopencl.

10.3 OPTIONS

-o outfile Where to write the resulting binary. By default, if the source program is named
‘foo.fut’, the binary will be named ‘foo’.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

--library Instead of compiling to an executable program, generate a Python module that
can be ported by other Python code. The module will contain a class of the same
name as the Futhark source file with .fut removed. Objects of the class define
one method per entry point in the Futhark program, with matching parameters
and return value.

-I dir, --import dir Add directory to the list of directories searched when locating imported files.

-h Print help text to standard output and exit.

43

Futhark Documentation, Release 0.3.1

-V Print version information on standard output and exit.

10.4 SEE ALSO

futhark-pyopencl(1)

44 Chapter 10. futhark-py

CHAPTER 11

futhark-pyopencl

11.1 SYNOPSIS

futhark-pyopencl [-V] [-o outfile] infile

11.2 DESCRIPTION

futhark-pyopencl translates a Futhark program to Python code invoking OpenCL kernels. By default, the pro-
gram uses the first device of the first OpenCL platform - this can be changed by passing -p and -d options to the
generated program (not to futhark-pyopencl itself).

The resulting program will otherwise behave exactly as one compiled with futhark-py. While the sequential host-
level code is pure Python and just as slow as in futhark-py, parallel sections will have been compiled to OpenCL,
and runs just as fast as when using futhark-c(1). The kernel launch overhead is significantly higher, however,
so a good rule of thumb when using futhark-pyopencl is to aim for having fewer but longer-lasting parallel
sections.

The generated code requires at least PyOpenCL version 2015.2.

11.3 OPTIONS

-o outfile Where to write the resulting binary. By default, if the source program is named
‘foo.fut’, the binary will be named ‘foo’.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

--library Instead of compiling to an executable program, generate a Python module that
can be ported by other Python code. The module will contain a class of the same
name as the Futhark source file with .fut removed. Objects of the class define

45

Futhark Documentation, Release 0.3.1

one method per entry point in the Futhark program, with matching parameters
and return value.

-I dir, --import dir Add directory to the list of directories searched when locating imported files.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

11.4 SEE ALSO

futhark-py(1), futhark-openlk(1)

46 Chapter 11. futhark-pyopencl

CHAPTER 12

futharki

12.1 SYNOPSIS

futharki [infile]

12.2 DESCRIPTION

When run with no options, start an interactive futharki session. This will let you interactively enter expressions which
are then immediately interpreted. You cannot enter function definitions and the like directly, but you can load Futhark
source files using the :load command. Use the :help command to see a list of commands. All commands are
prefixed with a colon.

When futharki is run with a Futhark program as the command line option, the program is executed by evaluating
the main function, and the result printed on standard output. The parameters to main are read from standard input.

Futharki will run the standard Futhark optimisation pipeline before execution, but the interpreter is still very slow.

12.3 OPTIONS

-e NAME Run the given entry point instead of main.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

12.4 BUGS

Input editing is not yet implemented; we recommend running futharki via rlwrap(1).

47

Futhark Documentation, Release 0.3.1

12.5 SEE ALSO

futhark-c(1), futhark-test(1)

48 Chapter 12. futharki

CHAPTER 13

futhark-test

13.1 SYNOPSIS

futhark-test [-c | -C | -t | -i] infiles. . .

13.2 DESCRIPTION

This program is used to integration-test the Futhark compiler itself. You must have futhark-c(1) and futharki(1) in
your PATH when running futhark-test. If a directory is given, all contained files with a .fut extension are
considered.

A Futhark test program is an ordinary Futhark program, with at least one test block describing input/output test cases
and possibly other options. A test block consists of commented-out text with the following overall format:

description
==
cases...

The description is an arbitrary (and possibly multiline) human-readable explanation of the test program. It is
separated from the test cases by a line containing just ==. Any comment starting at the beginning of the line, and
containing a line consisting of just ==, will be considered a test block. The format of a test case is as follows:

[tags { tags... }]
[entry: name]
[compiled|nobench] input {

values...
}
output { values... } | error: regex

If compiled is present before the input keyword, this test case will never be passed to the interpreter. This is
useful for test cases that are annoyingly slow to interpret. The nobench keyword is for data sets that are too small to
be worth benchmarking, and only has meaning to futhark-bench(1).

49

Futhark Documentation, Release 0.3.1

After the input block, the expected result of the test case is written as either another block of values, or an expected
run-time error, in which a regular expression can be used to specify the exact error message expected. If no regular
expression is given, any error message is accepted. If neither output nor error is given, the program will be
expected to execute succesfully, but its output will not be validated.

Alternatively, instead of input-output pairs, the test cases can simply be a description of an expected compile time type
error:

error: regex

This is used to test the type checker.

By default, both the interpreter and compiler is run on all test cases (except those that have specified compiled),
although this can be changed with command-line options to futhark-test.

Tuple syntax is not supported when specifying input and output values. Instead, you can write an N-tuple as its
constituent N values. Beware of syntax errors in the values - the errors reported by futhark-test are very poor.

An optional tags specification is permitted in the first test block. This section can contain arbitrary tags that classify
the benchmark:

tags { names... }

Tag are sequences of alphanumeric characters, with each tag seperated by whitespace. Any program with the
disable tag is ignored by futhark-test.

Another optional directive is entry, which specifies the entry point to be used for testing. This is useful for writing
programs that test libraries with multiple entry points. The entry directive affects subsequent input-output pairs in
the same comment block, and may only be present immediately preceding these input-output pairs. If no entry is
given, the default of main is assumed. See below for an example.

For many usage examples, see the tests directory in the Futhark source directory. A simple example can be found
in EXAMPLES below.

13.3 OPTIONS

--nobuffer Print each result on a line by itself, without buffering.

--exclude=tag Ignore benchmarks with the specified tag.

-c Only run compiled code - do not run any interpreters.

-i Only interpret - do not run any compilers.

-C Compile the programs, but do not run them.

-t Type-check the programs, but do not run them.

--compiler=program The program used to compile Futhark programs. This option can be passed
multiple times, with the last taking effect. The specified program must support
the same interface as futhark-c.

--interpreter=program Like --compiler, but for interpretation.

--typechecker=program Like --compiler, but for when execution has been disabled with -t.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

50 Chapter 13. futhark-test

Futhark Documentation, Release 0.3.1

futhark-bench prog.fut --compiler=futhark-opencl --pass-
→˓option=-dHawaii

13.4 EXAMPLES

The following program tests simple indexing and bounds checking:

-- Test simple indexing of an array.
-- ==
-- tags { firsttag secondtag }
-- input { [4,3,2,1] 1 }
-- output { 3 }
-- input { [4,3,2,1] 5 }
-- error: Assertion.*failed

let main (a: []i32) (i: i32): i32 =
a[i]

The following program contains two entry points, both of which are tested:

let add(x: i32, y: i32): i32 = x + y

-- Test the add1 function.
-- ==
-- entry: add1
-- input { 1 } output { 2 }

entry add1 (x: i32): i32 = add x 1

-- Test the sub1 function.
-- ==
-- entry: sub1
-- input { 1 } output { 0 }

entry sub1 (x: i32): i32 = add x (-1)

13.5 SEE ALSO

futhark-c(1), futharki(1)

13.4. EXAMPLES 51

Futhark Documentation, Release 0.3.1

52 Chapter 13. futhark-test

CHAPTER 14

futhark-bench

14.1 SYNOPSIS

futhark-bench [–runs=count | –compiler=program | –json | –no-validate] programs. . .

14.2 DESCRIPTION

This program is used to benchmark Futhark programs. In addition to the notation used by futhark-test(1), this
program also supports the dataset keyword nobench. This is used to indicate datasets that are worthwhile for testing,
but too small to be worth benchmarking.

Programs are compiled using the specified compiler (futhark-c by default), then run a number of times for each
data set, and the average runtime printed on standard output. A program will be ignored if it contains no data sets - it
will not even be compiled. Only data sets that use the default entry point (main) are considered.

If compilation or running fails, an error message will be printed and benchmarking will continue, but a non-zero exit
code will be returned at the end.

14.3 OPTIONS

--runs=count The number of runs per data set.

--compiler=program The program used to compile Futhark programs. This option can be passed
multiple times, resulting in multiple compilers being used for each test case. The
specified program must support the same interface as futhark-c.

--json=file Write raw results in JSON format to the specified file.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

53

Futhark Documentation, Release 0.3.1

futhark-bench prog.fut --compiler=futhark-opencl --pass-
→˓option=-dHawaii

--timeout=seconds If the runtime for a dataset exceeds this integral number of seconds, it is aborted.
Note that the time is allotted not per run, but for all runs for a dataset. A twenty
second limit for ten runs thus means each run has only two seconds (minus ini-
tialisation overhead).

A negative timeout means to wait indefinitely.

--skip-compilation Do not run the compiler, and instead assume that each benchmark program has
already been compiled. Use with caution.

14.4 EXAMPLES

The following program benchmarks how quickly we can sum arrays of different sizes:

-- How quickly can we reduce arrays?
--
-- ==
-- nobench input { 0 }
-- output { 0 }
-- input { 100 }
-- output { 4950 }
-- compiled input { 100000 }
-- output { 704982704 }
-- compiled input { 100000000 }
-- output { 887459712 }

let main(n: i32): i32 =
reduce (+) 0 (iota n)

14.5 SEE ALSO

futhark-c(1), futhark-test(1)

54 Chapter 14. futhark-bench

CHAPTER 15

futhark-doc

15.1 SYNOPSIS

futhark-doc [-o outdir] dir

15.2 DESCRIPTION

futhark-doc generates HTML-formatted documentation from Futhark code. One HTML file will be created for
each .fut file in the given directory, as well as any file reachable through import expressions. The given Futhark
code will be considered as one cohesive whole, and must be type-correct.

15.3 OPTIONS

-o outdir The name of the directory that will contain the generated documentation. This
option is mandatory.

-v, --verbose Print status messages to stderr while running.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

15.4 SEE ALSO

futhark-test(1), futhark-bench(1)

55

Futhark Documentation, Release 0.3.1

56 Chapter 15. futhark-doc

CHAPTER 16

futhark-dataset

16.1 SYNOPSIS

futhark-dataset options. . .

16.2 DESCRIPTION

Generate random values in Futhark syntax, which can be useful when generating input datasets for program testing.
All Futhark primitive types are supported. Tuples are not supported. Arrays of specific (non-random) sizes can
be generated. You can specify maximum and minimum bounds for values, as well as the random seed used when
generating the data. The generated values are written to standard output.

If no -g/--generate options are passed, values are read from standard input, and printed to standard output in the
indicated format. The input format (whether textual or binary) is automatically detected.

16.3 OPTIONS

-g type, --generate type Generate a value of the indicated type, e.g. -g i32 or -g [10]f32.

-s int Set the seed used for the RNG. Zero by default.

--T-bounds=<min:max> Set inclusive lower and upper bounds on generated values of type T. T is any
primitive type, e.g. i32 or f32. The bounds apply to any following uses of the
-g option.

You can alter the output format using the following flags. To use them, add them before data generation (–generate):

--text Output data in text format (must precede –generate). Default.

-b, --binary Output data in binary Futhark format (must precede –generate).

57

Futhark Documentation, Release 0.3.1

-t, --type Output the types of values (textually) instead of the values themselves. Mostly
useful when reading values on stdin.

16.4 EXAMPLES

Generate a 4 by 2 integer matrix:

futhark-dataset -g [4][2]i32

Generate an array of floating-point numbers and an array of indices into that array:

futhark-dataset -g [10]f32 --i32-bounds=0:9 -g [100]i32

To generate binary data, the --binary must come before the --generate:

futhark-dataset --binary --generate=[42]i32

Create a binary data file from a data file:

futhark-dataset --binary < any_data > binary_data

Determine the types of values contained in a data file:

futhark-dataset -t < any_data

16.5 SEE ALSO

futhark-test(1), futhark-bench(1)

58 Chapter 16. futhark-dataset

	Installation
	Compiling from source
	Installing from a precompiled snapshot
	Installing Futhark on Windows

	Basic Usage
	Compiling to Executable
	Compiling to Library

	Language Reference
	Identifiers and Keywords
	Primitive Types and Values
	Expressions
	Shape Declarations
	Declarations
	Module System
	Referring to Other Files
	Literal Defaults

	C Porting Guide
	Where This Guide Falls Short
	Types
	Operators
	Variable Mutation
	Arrays

	Hacking on the Futhark Compiler
	Debugging Internal Type Errors
	Checking Generated Code
	Using the futhark Tool

	Binary Data Format
	Specification

	futhark
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	futhark-c
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-opencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-py
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-pyopencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futharki
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO

	futhark-test
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-bench
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-doc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-dataset
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

