
Futhark Documentation
Release 0.17.3

DIKU

Oct 06, 2020

TABLE OF CONTENTS

1 Installation 3
1.1 Dependencies . 3
1.2 Compiling from source . 3
1.3 Installing from a precompiled snapshot . 4
1.4 Installing Futhark on Linux . 5
1.5 Installing Futhark on macOS . 5
1.6 Setting up Futhark on Windows . 6

2 Basic Usage 9
2.1 Compiling to Executable . 9
2.2 Compiling to Library . 12
2.3 Reproducibility . 15

3 Language Reference 17
3.1 Identifiers and Keywords . 17
3.2 Primitive Types and Values . 17
3.3 Declarations . 20
3.4 Expressions . 23
3.5 Higher-order functions . 31
3.6 Type Inference . 31
3.7 Size Types . 32
3.8 In-place Updates . 36
3.9 Module System . 37
3.10 Referring to Other Files . 40
3.11 Attributes . 41

4 C API Reference 43
4.1 Configuration . 43
4.2 Context . 44
4.3 Values . 44
4.4 Entry points . 45
4.5 GPU . 46
4.6 OpenCL . 46
4.7 CUDA . 47
4.8 General guarantees . 47

5 Package Management 49
5.1 Basic Concepts . 49
5.2 Using Packages . 49
5.3 Creating Packages . 51

i

5.4 Version Selection . 53
5.5 Tests and Documentation for Dependencies . 53
5.6 Safety . 53

6 C Porting Guide 55
6.1 Where This Guide Falls Short . 55
6.2 Types . 55
6.3 Operators . 55
6.4 Variable Mutation . 56
6.5 Arrays . 57

7 Futhark Compared to Other Functional Languages 59
7.1 Basic Syntax . 59
7.2 Evaluation . 60
7.3 Types . 60

8 Hacking on the Futhark Compiler 63
8.1 Debugging Internal Type Errors . 63
8.2 Checking Generated Code . 64
8.3 Using futhark dev . 64
8.4 When you are about to have a bad day . 64

9 Binary Data Format 65
9.1 Specification . 65

10 futhark 67
10.1 SYNOPSIS . 67
10.2 DESCRIPTION . 67
10.3 COMMANDS . 67
10.4 SEE ALSO . 68

11 futhark-autotune 69
11.1 SYNOPSIS . 69
11.2 DESCRIPTION . 69
11.3 OPTIONS . 69
11.4 SEE ALSO . 70

12 futhark-bench 71
12.1 SYNOPSIS . 71
12.2 DESCRIPTION . 71
12.3 OPTIONS . 71
12.4 WHAT FUTHARK BENCH MEASURES . 72
12.5 EXAMPLES . 72
12.6 SEE ALSO . 73

13 futhark-c 75
13.1 SYNOPSIS . 75
13.2 DESCRIPTION . 75
13.3 OPTIONS . 75
13.4 EXECUTABLE OPTIONS . 76
13.5 SEE ALSO . 76

14 futhark-cuda 77
14.1 SYNOPSIS . 77
14.2 DESCRIPTION . 77

ii

14.3 OPTIONS . 77
14.4 EXECUTABLE OPTIONS . 78
14.5 ENVIRONMENT . 78
14.6 SEE ALSO . 79

15 futhark-dataset 81
15.1 SYNOPSIS . 81
15.2 DESCRIPTION . 81
15.3 OPTIONS . 81
15.4 EXAMPLES . 82
15.5 SEE ALSO . 82

16 futhark-doc 83
16.1 SYNOPSIS . 83
16.2 DESCRIPTION . 83
16.3 OPTIONS . 83
16.4 EXAMPLES . 84
16.5 SEE ALSO . 84

17 futhark-opencl 85
17.1 SYNOPSIS . 85
17.2 DESCRIPTION . 85
17.3 OPTIONS . 85
17.4 EXECUTABLE OPTIONS . 86
17.5 SEE ALSO . 87

18 futhark-pkg 89
18.1 SYNOPSIS . 89
18.2 DESCRIPTION . 89
18.3 COMMANDS . 90
18.4 COMMIT VERSIONS . 91
18.5 EXAMPLES . 91
18.6 BUGS . 91
18.7 SEE ALSO . 91

19 futhark-pyopencl 93
19.1 SYNOPSIS . 93
19.2 DESCRIPTION . 93
19.3 OPTIONS . 93
19.4 SEE ALSO . 94

20 futhark-python 95
20.1 SYNOPSIS . 95
20.2 DESCRIPTION . 95
20.3 OPTIONS . 95
20.4 SEE ALSO . 96

21 futhark-repl 97
21.1 SYNOPSIS . 97
21.2 DESCRIPTION . 97
21.3 OPTIONS . 97
21.4 SEE ALSO . 97

22 futhark-run 99
22.1 SYNOPSIS . 99

iii

22.2 DESCRIPTION . 99
22.3 OPTIONS . 99
22.4 SEE ALSO . 99

23 futhark-test 101
23.1 SYNOPSIS . 101
23.2 DESCRIPTION . 101
23.3 OPTIONS . 102
23.4 EXAMPLES . 103
23.5 SEE ALSO . 104

Index 105

iv

Futhark Documentation, Release 0.17.3

Welcome to the documentation for the Futhark compiler and language. For a basic introduction, please see the Futhark
website. To get started, read the page on Installation. Once the compiler has been installed, you might want to take a
look at Basic Usage. This User’s Guide contains a Language Reference, but new Futhark programmers are probably
better served by reading Parallel Programming in Futhark first.

Documentation for the built-in prelude is also available online.

The particularly interested reader may also want to peruse the publications, or the development blog.

TABLE OF CONTENTS 1

http://futhark-lang.org
http://futhark-lang.org
https://futhark-book.readthedocs.io
https://futhark-lang.org/docs/prelude/
https://futhark-lang.org/docs.html#publications
https://futhark-lang.org/blog.html

Futhark Documentation, Release 0.17.3

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLATION

There are two main ways to install the Futhark compiler: using a precompiled tarball or compiling from source. Both
methods are discussed below. If you are using Linux, see Installing Futhark on Linux. If you are using Windows,
make sure to read Setting up Futhark on Windows. If you are using macOS, read Using OpenCL or CUDA.

Futhark is also available via Nix. If you are using Nix, simply install the futhark derivation from Nixpkgs.

1.1 Dependencies

The Linux binaries we distribute are statically linked and should not require any special libraries installed system-wide.

When building from source on Linux and macOS, you will need to have the gmp and tinfo libraries installed. These
are pretty common, so you may already have them. On Debian-like systems (e.g. Ubuntu), use:

sudo apt install libtinfo-dev libgmp-dev

If you install Futhark via a package manager (e.g. Homebrew, Nix, or AUR), you shouldn’t need to worry about any
of this.

Actually running the output of the Futhark compiler may require additional dependencies, for example an OpenCL
library and GPU driver. See the documentation for the respective compiler backends.

1.2 Compiling from source

The recommended way to compile Futhark is with the Haskell Tool Stack, which handles dependencies and compila-
tion of the Futhark compiler. You will therefore need to install the stack tool. Fortunately, the stack developers
provide ample documentation about installing Stack on a multitude of operating systems. If you’re lucky, it may even
be in your local package repository.

You can either retrieve a source release tarball or perform a checkout of our Git repository:

$ git clone https://github.com/diku-dk/futhark.git

This will create a directory futhark, which you must enter:

$ cd futhark

To get all the prerequisites for building the Futhark compiler (including, if necessary, the appropriate version of the
Haskell compiler), run:

$ stack setup

3

https://nixos.org/nix/
http://docs.haskellstack.org/
http://docs.haskellstack.org/#how-to-install
https://github.com/diku-dk/futhark/releases

Futhark Documentation, Release 0.17.3

Note that this will not install anything system-wide and will have no effect outside the Futhark build directory. Now
you can run the following command to build the Futhark compiler, including all dependencies:

$ stack build

The Futhark compiler and its tools will now be built. This step typically requires at least 8GiB of memory. You may
be able to build it on a smaller machine by adding the --fast option, although the resulting Futhark compiler binary
will run slower.

After building, you can copy the binaries to your $HOME/.local/bin directory by running:

$ stack install

Note that this does not install the Futhark manual pages.

1.2.1 Compiling with cabal

You can also compile Futhark with cabal. If so, you must install an appropriate version of GHC (usually the newest)
and cabal yourself, for example through your favourite package manager. On Linux, you can always use ghcup.
Then clone the repository as listed above and run:

$ cabal update
$ cabal build

To install the Futhark binaries to a specific location, for example $HOME/.local/bin, run:

$ cabal install --install-method=copy --overwrite-policy=always --installdir=$HOME/.
→˓local/bin/

1.3 Installing from a precompiled snapshot

Tarballs of binary releases can be found online, but are available only for very few platforms (as of this writing, only
GNU/Linux on x86_64). See the enclosed README.md for installation instructions.

Furthermore, every day a program automatically clones the Git repository, builds the compiler, and packages a simple
tarball containing the resulting binaries, built manpages, and a simple Makefile for installing. The implication is
that these tarballs are not vetted in any way, nor more stable than Git HEAD at any particular moment in time. They
are provided for users who wish to use the most recent code, but are unable to compile Futhark themselves.

We build such binary snapshots for the following operating systems:

Linux (x86_64) futhark-nightly-linux-x86_64.tar.xz

Windows (x86_64) futhark-nightly-windows-x86_64.zip

You will still likely need to make a C compiler (such as GCC) available on your own.

4 Chapter 1. Installation

https://gitlab.haskell.org/haskell/ghcup
https://futhark-lang.org/releases/
https://futhark-lang.org/releases/futhark-nightly-linux-x86_64.tar.xz
https://futhark-lang.org/releases/futhark-nightly-windows-x86_64.zip

Futhark Documentation, Release 0.17.3

1.4 Installing Futhark on Linux

• Linuxbrew is a distribution-agnostic package manager that contains a formula for Futhark. If Linuxbrew is
installed (which does not require root access), installation is as easy as:

$ brew install futhark

Note that as of this writing, Linuxbrew is hampered by limited compute resources for building packages, so the
Futhark version may be a bit behind.

• Arch Linux users can use a futhark-nightly package or a regular futhark package.

• NixOS users can install the futhark derivation.

Otherwise (or if the version in the package system is too old), your best bet is to install from source or use a tarball, as
described above.

1.4.1 Using OpenCL or CUDA

If you wish to use futhark opencl or futhark cuda, you must have the OpenCL or CUDA libraries installed,
respectively. Consult your favourite search engine for instructions on how to do this on your distribution. It is usually
not terribly difficult if you already have working GPU drivers.

For OpenCL, note that there is a distinction between the general OpenCL host library (OpenCL.so) that Futhark
links against, and the Installable Client Driver (ICD) that OpenCL uses to actually talk to the hardware. You will
need both. Working display drivers for the GPU does not imply that an ICD has been installed - they are usually in a
separate package. Consult your favourite search engine for details.

1.5 Installing Futhark on macOS

Futhark is available on Homebrew, and the latest release can be installed via:

$ brew install futhark

Or you can install the unreleased development version with:

$ brew install --HEAD futhark

This has to compile from source, so it takes a little while (20-30 minutes is common).

macOS ships with one OpenCL platform and various devices. One of these devices is always the CPU, which is not
fully functional, and is never picked by Futhark by default. You can still select it manually with the usual mechanisms
(see Executable Options), but it is unlikely to be able to run most Futhark programs. Depending on the system, there
may also be one or more GPU devices, and Futhark will simply pick the first one as always. On multi-GPU MacBooks,
this is is the low-power integrated GPU. It should work just fine, but you might have better performance if you use
the dedicated GPU instead. On a Mac with an AMD GPU, this is done by passing -dAMD to the generated Futhark
executable.

1.4. Installing Futhark on Linux 5

http://linuxbrew.sh/
https://aur.archlinux.org/packages/futhark-nightly/
https://aur.archlinux.org/packages/futhark
https://brew.sh/

Futhark Documentation, Release 0.17.3

1.6 Setting up Futhark on Windows

The Futhark compiler itself is easily installed on Windows via stack (see above). If you are using the default
Windows console, you may need to run chcp 65001 to make Unicode characters show up correctly.

It takes a little more work to make the OpenCL and PyOpenCL backends functional. This guide was last updated on
the 5th of May 2016, and is for computers using 64-bit Windows along with CUDA 7.5 and Python 2.7 (Anaconda
preferred).

Also Git for Windows is required for its Linux command line tools. If you have not marked the option to add them to
path, there are instructions below how to do so. The GUI alternative to git, GitHub Desktop is optional and does not
come with the required tools.

1.6.1 Setting up Futhark and OpenCL

1) Clone the Futhark repository to your hard drive.

2) Install Stack using the 64-bit installer. Compile the Futhark compiler as described in Installation.

3) For editing environment variables it is strongly recommended that you install the Rapid Environment Editor

4) For a Futhark compatible C/C++ compiler, that you will also need to install pyOpenCL later, install MingWpy.
Do this using the pip install -i https://pypi.anaconda.org/carlkl/simple mingwpy
command.

5) Assuming you have the latest Anaconda distribution as your primary one, it will get installed to a place such as
C:\Users\UserName\Anaconda2\share\mingwpy. The pip installation will not add its bin or include
directories to path.

To do so, open the Rapid Environment Editor and add C:\Users\UserName\Anaconda2\share\
mingwpy\bin to the system-wide PATH variable.

If you have other MingW or GCC distributions, make sure MingWpy takes priority by moving its entry above
the other distributions. You can also change which Python distribution is the default one using the same trick
should you need so.

If have done so correctly, typing where gcc in the command prompt should list the aforementioned MingWpy
installation at the top or show only it.

To finish the installation, add the C:\Users\UserName\Anaconda2\share\mingwpy\include to
the CPATH environment variable (note: not PATH). Create the variable if necessary.

6) The header files and the .dll for OpenCL that comes with the CUDA 7.5 distribution also need to be in-
stalled into MingWpy. Go to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.
5\include and copy the CL directory into the MingWpy include directory.

Next, go to C:\Program Files\NVIDIA Corporation\OpenCL and copy the OpenCL64.dll file
into the MingWpy lib directory (it is next to include).

The CUDA distribution also comes with the static OpenCL.lib, but trying to use that one instead of the
OpenCL64.dll will cause programs compiled with futhark opencl to crash, so ignore it completely.

Now you should be able to compile with futhark opencl and run Futhark programs on the GPU.

Congratulations!

6 Chapter 1. Installation

https://developer.nvidia.com/cuda-downloads
https://www.continuum.io/downloads#_windows
https://git-scm.com/download/win
https://desktop.github.com/
http://docs.haskellstack.org/en/stable/install_and_upgrade/#windows
http://www.rapidee.com/en/about

Futhark Documentation, Release 0.17.3

1.6.2 Setting up PyOpenCL

The following instructions are for how to setup the futhark-pyopencl backend.

First install Mako using pip install mako.

Also install PyPNG using pip install pypng (not stricly necessary, but some examples make use of it).

7) Clone the PyOpenCL repository to your hard drive. Do this instead of downloading the zip, as the zip will not
contain some of the other repositories it links to and you will end up with missing header files.

8) If you have ignored the instructions and gotten Python 3.x instead 2.7, you will have to do some extra work.

Edit .\pyopencl\compyte\ndarray\gen_elemwise.py and .\pyopencl\compyte\
ndarray\test_gpu_ndarray.py and convert most Python 2.x style print statements to Python 3
syntax. Basically wrap print arguments in brackets “(..)” and ignore any lines containing StringIO >> operator.

Otherwise just go to the next point.

9) Go into the repo directory and from the command line execute python configure.py.

Edit siteconf.py to following:

CL_TRACE = false
CL_ENABLE_GL = false
CL_INC_DIR = ['c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.5\\
→˓include']
CL_LIB_DIR = ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v7.5\\lib\\
→˓x64']
CL_LIBNAME = ['OpenCL']
CXXFLAGS = ['-std=c++0x']
LDFLAGS = []

Run the following commands:

> python setup.py build_ext --compiler=mingw32
> python setup.py install

If everything went in order, pyOpenCL should be installed on your machine now.

10) Lastly, Pygame needs to be installed. Again, not stricly necessary, but some examples make use of it. To do
so on Windows, download pygame-1.9.2a0-cp27-none-win_amd64.whl from here. cp27 means
Python 2.7 and win_amd64 means 64-bit Windows.

Go to the directory you have downloaded the file and execute pip install pygame-1.9.
2a0-cp27-none-win_amd64.whl from the command line.

Now you should be able to run the Game of Life example.

11) To run the makefiles, first setup make by going to the bin directory of MingWpy and making a copy of
mingw32-make.exe. Then simply rename mingw32-make - Copy.exe or similar to make.exe.
Now you will be able to run the makefiles.

Also, if you have not selected to add the optional Linux command line tools to PATH during the Git for
Windows installation, add the C:\Program Files\Git\usr\bin directory to PATH manually now.

12) This guide has been written off memory, so if you are having difficulties - ask on the issues page. There might
be errors in it.

1.6. Setting up Futhark on Windows 7

https://github.com/pyopencl/pyopencl
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame
https://github.com/diku-dk/futhark-benchmarks/tree/master/misc/life
https://github.com/diku-dk/futhark/issues

Futhark Documentation, Release 0.17.3

8 Chapter 1. Installation

CHAPTER

TWO

BASIC USAGE

Futhark contains several code generation backends. Each is provided as subcommand of the futhark binary. For ex-
ample, futhark c compiles a Futhark program by translating it to sequential C code, while futhark pyopencl
generates Python code with calls to the PyOpenCL library. The different compilers all contain the same frontend and
optimisation pipeline - only the code generator is different. They all provide roughly the same command line interface,
but there may be minor differences and quirks due to characteristics of the specific backends.

There are two main ways of compiling a Futhark program: to an executable (by using --executable, which is the
default), and to a library (--library). Executables can be run immediately, but are useful mostly for testing and
benchmarking. Libraries can be called from non-Futhark code.

2.1 Compiling to Executable

A Futhark program is stored in a file with the extension .fut. It can be compiled to an executable program as follows:

$ futhark c prog.fut

This makes use of the futhark c compiler, but any other will work as well. The compiler will automatically invoke
gcc to produce an executable binary called prog. If we had used futhark py instead of futhark c, the prog
file would instead have contained Python code, along with a shebang for easy execution. In general, when compiling
file foo.fut, the result will be written to a file foo (i.e. the extension will be stripped off). This can be overridden
using the -o option. For more details on specific compilers, see their individual manual pages.

Executables generated by the various Futhark compilers share a common command-line interface, but may also indi-
vidually support more options. When a Futhark program is run, execution starts at one of its entry points. By default,
the entry point named main is run. An alternative entry point can be indicated by using the -e option. All entry point
functions must be declared appropriately in the program (see Entry Points). If the entry point takes any parameters,
these will be read from standard input in a subset of the Futhark syntax. A binary input format is also supported; see
Binary Data Format. The result of the entry point is printed to standard output.

Only a subset of all Futhark values can be passed to an executable. Specifically, only primitives and arrays of primitive
types are supported. In particular, nested tuples and arrays of tuples are not permitted. Non-nested tuples are supported
are supported as simply flat values. This restriction is not present for Futhark programs compiled to libraries. If an
entry point returns any such value, its printed representation is unspecified. As a special case, an entry point is allowed
to return a flat tuple.

Instead of compiling, there is also an interpreter, accessible as futhark run and futhark repl. The latter is
an interactive prompt, useful for experimenting with Futhark expressions. Be aware that the interpreter runs code very
slowly.

9

https://en.wikipedia.org/wiki/Shebang_%28Unix%29

Futhark Documentation, Release 0.17.3

2.1.1 Executable Options

All generated executables support the following options.

-h/--help

Print help text to standard output and exit.

-t FILE

Print the time taken to execute the program to the indicated file, an integral number of microsec-
onds. The time taken to perform setup or teardown, including reading the input or writing the
result, is not included in the measurement. See the documentation for specific compilers to see
exactly what is measured.

-r RUNS

Run the specified entry point the given number of times (plus a warmup run). The program
result is only printed once, after the last run. If combined with -t, one measurement is printed
per run. This is a good way to perform benchmarking.

-D

Print debugging information on standard error. Exactly what is printed, and how it looks,
depends on which Futhark compiler is used. This option may also enable more conservative
(and slower) execution, such as frequently synchronising to check for errors.

-b

Print the result using the binary data format (Binary Data Format). For large outputs, this is
significantly faster and takes up less space.

Parallel Options

The following options are supported by executables generated with the GPU backends (opencl, pyopencl, and
cuda).

-d DEVICE

Pick the first device whose name contains the given string. The special string #k, where k is
an integer, can be used to pick the k-th device, numbered from zero.

--tuning=FILE

Load tuning options from the indicated tuning file. The file must contain lines of the form
SIZE=VALUE, where each SIZE must be one of the sizes listed by the --print-sizes
option (without size class), and the VALUE must be a non-negative integer. Extraneous spaces
or blank lines are not allowed. A zero means to use the default size, whatever it may be. In case
of duplicate assignments to the same size, the last one takes predecence. This is equivalent to
passing each size setting on the command like using the --size option, but more convenient.

--print-sizes

Print a list of tunable sizes followed by their size class in parentheses, which indicates what
they are used for.

--size=SIZE=VALUE

Set one of the tunable sizes to the given value. Using the --tuning option is more conve-
nient.

10 Chapter 2. Basic Usage

Futhark Documentation, Release 0.17.3

OpenCL-specific Options

The following options are supported by executables generated with the OpenCL backends (opencl, pyopencl):

-P

Measure the time taken by various OpenCL operations (such as kernels) and print a summary
at the end. Unfortunately, it is currently nontrivial (and manual) to relate these operations back
to source Futhark code.

-p PLATFORM

Pick the first OpenCL platform whose name contains the given string. The special string #k,
where k is an integer, can be used to pick the k-th platform, numbered from zero. If used in
conjunction with -d, only the devices from matching platforms are considered.

-d DEVICE

Pick the first OpenCL device whose name contains the given string. The special string #k,
where k is an integer, can be used to pick the k-th device, numbered from zero. If used in
conjunction with -p, only the devices from matching platforms are considered.

--default-group-size INT

The default size of OpenCL workgroups that are launched. Capped to the hardware limit if
necessary.

--default-num-groups INT

The default number of OpenCL workgroups that are launched.

--dump-opencl FILE

Don’t run the program, but instead dump the embedded OpenCL program to the indicated file.
Useful if you want to see what is actually being executed.

--load-opencl FILE

Instead of using the embedded OpenCL program, load it from the indicated file. This is ex-
tremely unlikely to result in succesful execution unless this file is the result of a previous call
to --dump-opencl (perhaps lightly modified).

--dump-opencl-binary FILE

Don’t run the program, but instead dump the compiled version of the embedded OpenCL
program to the indicated file. On NVIDIA platforms, this will be PTX code. If this option is
set, no entry point will be run.

--load-opencl-binary FILE

Load an OpenCL binary from the indicated file.

--build-option OPT

Add an additional build option to the string passed to clBuildProgram(). Refer to the
OpenCL documentation for which options are supported. Be careful - some options can easily
result in invalid results.

--list-devices

List all OpenCL devices and platforms available on the system.

There is rarely a need to use both -p and -d. For example, to run on the first available NVIDIA GPU, -p NVIDIA
is sufficient, as there is likely only a single device associated with this platform. On *nix (including macOS), the

2.1. Compiling to Executable 11

Futhark Documentation, Release 0.17.3

clinfo tool (available in many package managers) can be used to determine which OpenCL platforms and devices are
available on a given system. On Windows, CPU-z can be used.

CUDA-specific Options

The following options are supported by executables generated by the cuda backend:

--dump-cuda FILE

Don’t run the program, but instead dump the embedded CUDA program to the indicated file.
Useful if you want to see what is actually being executed.

--load-cuda FILE

Instead of using the embedded CUDA program, load it from the indicated file. This is ex-
tremely unlikely to result in succesful execution unless this file is the result of a previous call
to --dump-cuda (perhaps lightly modified).

--dump-ptx FILE

As --dump-cuda, but dumps the compiled PTX code instead.

--load-ptx FILE

Instead of using the embedded CUDA program, load compiled PTX code from the indicated
file.

--nvrtc-option=OPT

Add the given option to the command line used to compile CUDA kernels with NVRTC.
The list of supported options varies with the CUDA version but can be found in the NVRTC
documentation.

For convenience, CUDA executables also accept the same --default-num-groups and
--default-group-size options that the OpenCL backend uses. These then refer to grid size and thread
block size, respectively.

2.2 Compiling to Library

While compiling a Futhark program to an executable is useful for testing, it is not suitable for production use. Instead,
a Futhark program should be compiled into a reusable library in some target language, enabling integration into a
larger program. Five of the Futhark compilers support this: futhark c, futhark opencl, futhark cuda,
futhark py, and futhark pyopencl.

2.2.1 General Concerns

Futhark entry points are mapped to some form of function or method in the target language. Generally, an entry point
taking n parameters will result in a function taking n parameters. Extra parameters may be added to pass in context
data, or out-parameters for writing the result, for target languages that do not support multiple return values from
functions.

Not all Futhark types can be mapped cleanly to the target language. Arrays of tuples, for example, are a common
issue. In such cases, opaque types are used in the generated code. Values of these types cannot be directly inspected,
but can be passed back to Futhark entry points. In the general case, these types will be named with a random hash.
However, if you insert an explicit type annotation (and the type name contains only characters valid for identifiers for
the used backend), the indicated name will be used. Note that arrays contain brackets, which are usually not valid in
identifiers. Defining a simple type alias is the best way around this.

12 Chapter 2. Basic Usage

https://github.com/Oblomov/clinfo
https://www.cpuid.com/softwares/cpu-z.html
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options

Futhark Documentation, Release 0.17.3

2.2.2 Generating C

A Futhark program futlib.fut can be compiled to reusable C code using either:

$ futhark c --library futlib.fut

Or:

$ futhark opencl --library futlib.fut

This produces two files in the current directory: futlib.c and futlib.h. If we wish (and are on a Unix system),
we can then compile futlib.c to an object file like this:

$ gcc futlib.c -c

This produces a file futlib.o that can then be linked with the main application. Details of how to link the generated
code with other C code is highly system-dependent, and outside the scope of this manual. On Unix, we can simply
add futlib.o to the final compiler or linker command line:

$ gcc main.c -o main futlib.o

Depending on the Futhark backend you are using, you may need to add some linker flags. For example, futhark
opencl requires -lOpenCL (-framework OpenCL on macOS). See the manual page for each compiler for
details.

It is also possible to simply add the generated .c file to the C compiler command line used for compiling our whole
program (here main.c):

$ gcc main.c -o main futlib.c

The downside of this approach is that the generated .c file may contain code that causes the C compiler to warn (for
example, unused support code that is not needed by the Futhark program).

The generated header file (here, futlib.h) specifies the API, and is intended to be human-readable. See C API
Reference for more information.

The basic usage revolves around creating a configuration object, which can then be used to obtain a context object,
which must be passed whenever entry points are called.

The configuration object is created using the following function:

struct futhark_context_config *futhark_context_config_new();

Depending on the backend, various functions are generated to modify the configuration. The following is always
available:

void futhark_context_config_set_debugging(struct futhark_context_config *cfg,
int flag);

A configuration object can be used to create a context with the following function:

struct futhark_context *futhark_context_new(struct futhark_context_config *cfg);

Context creation may fail. Immediately after futhark_context_new(), call
futhark_context_get_error() (see below), which will return a non-NULL error string if context
creation failed. The API functions are all thread safe.

Memory management is entirely manual. Deallocation functions are provided for all types defined in the header file.
Everything returned by an entry point must be manually deallocated.

2.2. Compiling to Library 13

Futhark Documentation, Release 0.17.3

For now, many internal errors, such as failure to allocate memory, will cause the function to abort() rather than
return an error code. However, all application errors (such as bounds and array size checks) will produce an error code.

C with OpenCL

When generating C code with futhark opencl, you will need to link against the OpenCL library when linking
the final binary:

$ gcc main.c -o main futlib.o -lOpenCL

When using the OpenCL backend, extra API functions are provided for directly accessing or providing the OpenCL
objects used by Futhark. Take care when using these functions. In particular, a Futhark context can now be provided
with the command queue to use:

struct futhark_context *futhark_context_new_with_command_queue(struct futhark_context_
→˓config *cfg, cl_command_queue queue);

As a cl_command_queue specifies an OpenCL device, this is also how manual platform and device selection is
possible. A function is also provided for retrieving the command queue used by some Futhark context:

cl_command_queue futhark_context_get_command_queue(struct futhark_context *ctx);

This can be used to connect two separate Futhark contexts that have been loaded dynamically.

The raw cl_mem object underlying a Futhark array can be accessed with the function named
futhark_values_raw_type, where type depends on the array in question. For example:

cl_mem futhark_values_raw_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d
→˓*arr);

The array will be stored in row-major form in the returned memory object. The function performs no copying, so the
cl_mem still belongs to Futhark, and may be reused for other purposes when the corresponding array is freed. A dual
function can be used to construct a Futhark array from a cl_mem:

struct futhark_i32_1d *futhark_new_raw_i32_1d(struct futhark_context *ctx,
cl_mem data,
int offset,
int dim0);

This function does copy the provided memory into fresh internally allocated memory. The array is assumed to be
stored in row-major form offset bytes into the memory region.

See also futhark-opencl.

2.2.3 Generating Python

The futhark py and futhark pyopencl compilers both support generating reusable Python code, although
the latter of these generates code of sufficient performance to be worthwhile. The following mentions options and
parameters only available for futhark pyopencl. You will need at least PyOpenCL version 2015.2.

We can use futhark pyopencl to translate the program futlib.fut into a Python module futlib.py with
the following command:

$ futhark pyopencl --library futlib.fut

14 Chapter 2. Basic Usage

Futhark Documentation, Release 0.17.3

This will create a file futlib.py, which contains Python code that defines a class named futlib. This class
defines one method for each entry point function (see Entry Points) in the Futhark program. The methods take one
parameter for each parameter in the corresponding entry point, and return a tuple containing a value for every value
returned by the entry point. For entry points returning a single (non-tuple) value, just that value is returned (that is,
single-element tuples are not returned).

After the class has been instantiated, these methods can be invoked to run the corresponding Futhark function. The
constructor for the class takes various keyword parameters:

interactive=BOOL

If True (the default is False), show a menu of available OpenCL platforms and devices, and
use the one chosen by the user.

platform_pref=STR

Use the first platform that contains the given string. Similar to the -p option for executables.

device_pref=STR

Use the first device that contains the given string. Similar to the -d option for executables.

Futhark arrays are mapped to either the Numpy ndarray type or the pyopencl.array type. Scalars are mapped to
Numpy scalar types.

2.3 Reproducibility

The Futhark compiler is deterministic by design, meaning that repeatedly compiling the same program with the same
compilation flags and using the same version of the compiler will produce identical output every time.

Note that this only applies to the code generated by the Futhark compiler itself. When compiling to an executable
with one of the C backends (see Compiling to Executable), Futhark will invoke a C compiler that may not be perfectly
reproducible. In such cases the generated .c and .h files will be reproducible, but the final executable may not.

2.3. Reproducibility 15

https://documen.tician.de/pyopencl/array.html

Futhark Documentation, Release 0.17.3

16 Chapter 2. Basic Usage

CHAPTER

THREE

LANGUAGE REFERENCE

This reference seeks to describe every construct in the Futhark language. It is not presented in a tutorial fashion, but
rather intended for quick lookup and documentation of subtleties. For this reason, it is not written in a bottom-up
manner, and some concepts may be used before they are fully defined. It is a good idea to have a basic grasp of
Futhark (or some other functional programming language) before reading this reference. An ambiguous grammar is
given for the full language. The text describes how ambiguities are resolved in practice (for example by applying rules
of operator precedence).

This reference describes only the language itself. Documentation for the built-in prelude is available elsewhere.

3.1 Identifiers and Keywords

id ::= letter (letter | "_" | "'")* | "_" id
quals ::= (id ".")+
qualid ::= id | quals id
binop ::= opstartchar opchar*
qualbinop ::= binop | quals binop | "`" qualid "`"
fieldid ::= decimal | id
opstartchar ::= "+" | "-" | "*" | "/" | "%" | "=" | "!" | ">" | "<" | "|" | "&" | "^"
opchar ::= opstartchar | "."
constructor ::= "#" id

Many things in Futhark are named. When we are defining something, we give it an unqualified name (id). When
referencing something inside a module, we use a qualified name (qualid). The constructor names of a sum type are
identifiers prefixed with #, with no space afterwards. The fields of a record are named with fieldid. Note that a fieldid
can be a decimal number. Futhark has three distinct name spaces: terms, module types, and types. Modules (including
parametric modules) and values both share the term namespace.

3.2 Primitive Types and Values

literal ::= intnumber | floatnumber | "true" | "false"

Boolean literals are written true and false. The primitive types in Futhark are the signed integer types i8, i16,
i32, i64, the unsigned integer types u8, u16, u32, u64, the floating-point types f32, f64, as well as bool. An
f32 is always a single-precision float and a f64 is a double-precision float.

int_type ::= "i8" | "i16" | "i32" | "i64" | "u8" | "u16" | "u32" | "u64"

17

https://futhark-lang.org/docs/prelude

Futhark Documentation, Release 0.17.3

float_type ::= "f32" | "f64"

Numeric literals can be suffixed with their intended type. For example 42i8 is of type i8, and 1337e2f64 is of type
f64. If no suffix is given, the type of the literal will be inferred based on its use. If the use is not constrained, integral
literals will be assigned type i32, and decimal literals type f64. Hexadecimal literals are supported by prefixing with
0x, and binary literals by prefixing with 0b.

Floats can also be written in hexadecimal format such as 0x1.fp3, instead of the usual decimal notation. Here,
0x1.f evaluates to 1 15/16 and the p3 multiplies it by 2^3 = 8.

intnumber ::= (decimal | hexadecimal | binary) [int_type]
decimal ::= decdigit (decdigit |"_")*
hexadecimal ::= 0 ("x" | "X") hexdigit (hexdigit |"_")*
binary ::= 0 ("b" | "B") bindigit (bindigit | "_")*

floatnumber ::= (pointfloat | exponentfloat | hexadecimalfloat) [float_type]
pointfloat ::= [intpart] fraction
exponentfloat ::= (intpart | pointfloat) exponent
hexadecimalfloat ::= 0 ("x" | "X") hexintpart hexfraction ("p"|"P") ["+" | "-"] decdigit+
intpart ::= decdigit (decdigit |"_")*
fraction ::= "." decdigit (decdigit |"_")*
hexintpart ::= hexdigit (hexdigit | "_")*
hexfraction ::= "." hexdigit (hexdigit |"_")*
exponent ::= ("e" | "E") ["+" | "-"] decdigit+

decdigit ::= "0"..."9"
hexdigit ::= decdigit | "a"..."f" | "A"..."F"
bindigit ::= "0" | "1"

3.2.1 Compound Types and Values

type ::= qualid
| array_type
| tuple_type
| record_type
| sum_type
| function_type
| type_application

Compound types can be constructed based on the primitive types. The Futhark type system is entirely structural, and
type abbreviations are merely shorthands. The only exception is abstract types whose definition has been hidden via
the module system (see Module System).

tuple_type ::= "(" ")" | "(" type ("," type)+ ")"

A tuple value or type is written as a sequence of comma-separated values or types enclosed in parentheses. For
example, (0, 1) is a tuple value of type (i32,i32). The elements of a tuple need not have the same type –
the value (false, 1, 2.0) is of type (bool, i32, f64). A tuple element can also be another tuple, as in

18 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

((1,2),(3,4)), which is of type ((i32,i32),(i32,i32)). A tuple cannot have just one element, but empty
tuples are permitted, although they are not very useful. Empty tuples are written () and are of type ().

array_type ::= "[" [dim] "]" type
dim ::= qualid | decimal

An array value is written as a sequence of zero or more comma-separated values enclosed in square brackets: [1,
2,3]. An array type is written as [d]t, where t is the element type of the array, and d is an integer or variable
indicating the size. We can often elide d and write just [] (an anonymous size), in which case the size will be inferred.
As an example, an array of three integers could be written as [1,2,3], and has type [3]i32. An empty array is
written as [], and its type is inferred from its use. When writing Futhark values for such uses as futhark test
(but not when writing programs), empty arrays are written empty([0]t) for an empty array of type [0]t. When
using empty, all dimensions must be given a size, and at least one must be zero, e.g. empty([2][0]i32).

Multi-dimensional arrays are supported in Futhark, but they must be regular, meaning that all inner arrays must have
the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type [3][2]i32, but [[1,2],
[3,4,5], [6,7]] is not, because there we cannot come up with integers m and n such that [m][n]i32 describes
the array. The restriction to regular arrays is rooted in low-level concerns about efficient compilation. However, we
can understand it in language terms by the inability to write a type with consistent dimension sizes for an irregular
array value. In a Futhark program, all array values, including intermediate (unnamed) arrays, must be typeable.

sum_type ::= constructor type* ("|" constructor type*)*

Sum types are anonymous in Futhark, and are written as the constructors separated by vertical bars. Each constructor
consists of a #-prefixed name, followed by zero or more types, called its payload. Note: The current implementation
of sum types is fairly inefficient, in that all possible constructors of a sum-typed value will be resident in memory.
Avoid using sum types where multiple constructors have large payloads.

record_type ::= "{" "}" | "{" fieldid ":" type ("," fieldid ":" type)* "}"

Records are mappings from field names to values, with the field names known statically. A tuple behaves in all respects
like a record with numeric field names starting from zero, and vice versa. It is an error for a record type to name the
same field twice.

type_application ::= type type_arg | "*" type
type_arg ::= "[" [dim] "]" | type

A parametric type abbreviation can be applied by juxtaposing its name and its arguments. The application must provide
as many arguments as the type abbreviation has parameters - partial application is presently not allowed. See Type
Abbreviations for further details.

function_type ::= param_type "->" type
param_type ::= type | "(" id ":" type ")"

Functions are classified via function types, but they are not fully first class. See Higher-order functions for the details.

stringlit ::= '"' stringchar '"'
stringchar ::= <any source character except "\" or newline or quotes>

3.2. Primitive Types and Values 19

Futhark Documentation, Release 0.17.3

String literals are supported, but only as syntactic sugar for UTF-8 encoded arrays of u8 values. There is no character
type in Futhark.

3.3 Declarations

A Futhark file or module consists of a sequence of declarations. Each declaration is processed in order, and a declara-
tion can only refer to names bound by preceding declarations.

dec ::= fun_bind | val_bind | type_bind | mod_bind | mod_type_bind
| "open" mod_exp
| "import" stringlit
| "local" dec
| "#[" attr "]" dec

The open declaration brings names defined in another module into scope (see also Module System). For the meaning
of import, see Referring to Other Files. If a declaration is prefixed with local, whatever names it defines will not
be visible outside the current module. In particular local open is used to bring names from another module into
scope, without making those names available to users of the module being defined. In most cases, using module type
ascription is a better idea.

3.3.1 Declaring Functions and Values

fun_bind ::= ("let" | "entry") (id | "(" binop ")") type_param* pat+ [":" type] "=" exp
| ("let" | "entry") pat binop pat [":" type] "=" exp

val_bind ::= "let" id [":" type] "=" exp

Functions and values must be defined before they are used. A function declaration must specify the name, parameters,
and body of the function:

let name params...: rettype = body

Hindley-Milner-style type inference is supported. A parameter may be given a type with the notation (name:
type). Functions may not be recursive. You may put size annotations in the return type and parameter types;
see Size Types. A function can be polymorphic by using type parameters, in the same way as for Type Abbreviations:

let reverse [n] 't (xs: [n]t): [n]t = xs[::-1]

Type parameters for a function do not need to cover the types of all parameters. The type checker will add more if
necessary. For example, the following is well typed:

let pair 'a (x: a) y = (x, y)

A new type variable will be invented for the parameter y.

Shape and type parameters are not passed explicitly when calling function, but are automatically derived. If an array
value v is passed for a type parameter t, all other arguments passed of type t must have the same shape as v. For
example, consider the following definition:

20 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

let pair 't (x: t) (y: t) = (x, y)

The application pair [1] [2,3] will fail at run-time.

To simplify the handling of in-place updates (see In-place Updates), the value returned by a function may not alias
any global variables.

3.3.2 User-Defined Operators

Infix operators are defined much like functions:

let (p1: t1) op (p2: t2): rt = ...

For example:

let (a:i32,b:i32) +^ (c:i32,d:i32) = (a+c, b+d)

We can also define operators by enclosing the operator name in parentheses and suffixing the parameters, as an ordinary
function:

let (+^) (a:i32,b:i32) (c:i32,d:i32) = (a+c, b+d)

This is necessary when defining a polymorphic operator.

A valid operator name is a non-empty sequence of characters chosen from the string "+-*/%=!><&^". The fixity
of an operator is determined by its first characters, which must correspond to a built-in operator. Thus, +^ binds like
+, whilst *^ binds like *. The longest such prefix is used to determine fixity, so >>= binds like >>, not like >.

It is not permitted to define operators with the names && or || (although these as prefixes are accepted). This is
because a user-defined version of these operators would not be short-circuiting. User-defined operators behave exactly
like ordinary functions, except for being infix.

A built-in operator can be shadowed (i.e. a new + can be defined). This will result in the built-in polymorphic operator
becoming inaccessible, except through the intrinsics module.

An infix operator can also be defined with prefix notation, like an ordinary function, by enclosing it in parentheses:

let (+) (x: i32) (y: i32) = x - y

This is necessary when defining operators that take type or shape parameters.

3.3.3 Entry Points

Apart from declaring a function with the keyword let, it can also be declared with entry. When the Futhark
program is compiled any top-level function declared with entry will be exposed as an entry point. If the Futhark
program has been compiled as a library, these are the functions that will be exposed. If compiled as an executable, you
can use the --entry-point command line option of the generated executable to select the entry point you wish to
run.

Any top-level function named main will always be considered an entry point, whether it is declared with entry or
not.

The name of an entry point must not contain an apostrophe ('), even though that is normally permitted in Futhark
identifiers.

3.3. Declarations 21

Futhark Documentation, Release 0.17.3

3.3.4 Value Declarations

A named value/constant can be declared as follows:

let name: type = definition

The definition can be an arbitrary expression, including function calls and other values, although they must be in scope
before the value is defined. A constant value may not have a unique type (see In-place updates). If the return type
contains any anonymous sizes (see Size types), new existential sizes will be constructed for them.

3.3.5 Type Abbreviations

type_bind ::= "type" ["^" | "~"] id type_param* "=" type
type_param ::= "[" id "]" | "'" id | "'~" id | "'^" id

Type abbreviations function as shorthands for the purpose of documentation or brevity. After a type binding type
t1 = t2, the name t1 can be used as a shorthand for the type t2. Type abbreviations do not create distinct types:
the types t1 and t2 are entirely interchangeable.

If the right-hand side of a type contains anonymous sizes, it must be declared “size-lifted” with type~. If it (poten-
tially) contains a function, it must be declared “fully lifted” with type^. A lifted type can also contain anonymous
sizes. Lifted types cannot be put in arrays. Fully lifted types cannot be returned from conditional or loop expressions.

A type abbreviation can have zero or more parameters. A type parameter enclosed with square brackets is a size
parameter, and can be used in the definition as an array dimension size, or as a dimension argument to other type
abbreviations. When passing an argument for a shape parameter, it must be enclosed in square brackets. Example:

type two_intvecs [n] = ([n]i32, [n]i32)

let x: two_intvecs [2] = (iota 2, replicate 2 0)

Size parameters work much like shape declarations for arrays. Like shape declarations, they can be elided via square
brackets containing nothing. All size parameters must be used in the definition of the type abbreviation.

A type parameter prefixed with a single quote is a type parameter. It is in scope as a type in the definition of the type
abbreviation. Whenever the type abbreviation is used in a type expression, a type argument must be passed for the
parameter. Type arguments need not be prefixed with single quotes:

type two_vecs [n] 't = ([n]t, [n]t)
type two_intvecs [n] = two_vecs [n] i32
let x: two_vecs [2] i32 = (iota 2, replicate 2 0)

A size-lifted type parameter is prefixed with '~, and a fully lifted type parameter with '^. These have the same rules
and restrictions as lifted type abbreviations.

22 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.4 Expressions

Expressions are the basic construct of any Futhark program. An expression has a statically determined type, and
produces a value at runtime. Futhark is an eager/strict language (“call by value”).

The basic elements of expressions are called atoms, for example literals and variables, but also more complicated
forms.

atom ::= literal
| qualid ("." fieldid)*
| stringlit
| "(" ")"
| "(" exp ")" ("." fieldid)*
| "(" exp ("," exp)* ")"
| "{" "}"
| "{" field ("," field)* "}"
| qualid "[" index ("," index)* "]"
| "(" exp ")" "[" index ("," index)* "]"
| quals "." "(" exp ")"
| "[" exp ("," exp)* "]"
| "[" exp [".." exp] "..." exp "]"
| "(" qualbinop ")"
| "(" exp qualbinop ")"
| "(" qualbinop exp ")"
| "(" ("." field)+ ")"
| "(" "." "[" index ("," index)* "]" ")"

exp ::= atom
| exp qualbinop exp
| exp exp
| constructor exp*
| exp ":" type
| exp ":>" type
| exp [".." exp] "..." exp
| exp [".." exp] "..<" exp
| exp [".." exp] "..>" exp
| "if" exp "then" exp "else" exp
| "let" pat "=" exp "in" exp
| "let" id "[" index ("," index)* "]" "=" exp "in" exp
| "let" id type_param* pat+ [":" type] "=" exp "in" exp
| "(" "\" pat+ [":" type] "->" exp ")"
| "loop" pat [("=" exp)] loopform "do" exp
| "#[" attr "]" exp
| "unsafe" exp
| "assert" atom atom
| exp "with" "[" index ("," index)* "]" "=" exp
| exp "with" fieldid ("." fieldid)* "=" exp
| "match" exp ("case" pat "->" exp)+

field ::= fieldid "=" exp
| id

pat ::= id
| literal
| "_"
| "(" ")"

3.4. Expressions 23

Futhark Documentation, Release 0.17.3

| "(" pat ")"
| "(" pat ("," pat)+ ")"
| "{" "}"
| "{" fieldid ["=" pat] ("," fieldid ["=" pat])* "}"
| constructor pat*
| pat ":" type

loopform ::= "for" id "<" exp
| "for" pat "in" exp
| "while" exp

index ::= exp [":" [exp]] [":" [exp]]
| [exp] ":" exp [":" [exp]]
| [exp] [":" exp] ":" [exp]

Some of the built-in expression forms have parallel semantics, but it is not guaranteed that the the parallel constructs
in Futhark are evaluated in parallel, especially if they are nested in complicated ways. Their purpose is to give the
compiler as much freedom and information is possible, in order to enable it to maximise the efficiency of the generated
code.

3.4.1 Resolving Ambiguities

The above grammar contains some ambiguities, which in the concrete implementation is resolved via a combination
of lexer and grammar transformations. For ease of understanding, they are presented here in natural text.

• An expression x.y may either be a reference to the name y in the module x, or the field y in the record x.
Modules and values occupy the same name space, so this is disambiguated by the type of x.

• A type ascription (exp : type) cannot appear as an array index, as it conflicts with the syntax for slicing.

• In f [x], there is am ambiguity between indexing the array f at position x, or calling the function f with the
singleton array x. We resolve this the following way:

– If there is a space between f and the opening bracket, it is treated as a function application.

– Otherwise, it is an array index operation.

• An expression (-x) is parsed as the variable x negated and enclosed in parentheses, rather than an operator
section partially applying the infix operator -.

• The following table describes the precedence and associativity of infix operators. All operators in the same row
have the same precedence. The rows are listed in increasing order of precedence. Note that not all operators
listed here are used in expressions; nevertheless, they are still used for resolving ambiguities.

Associativity Operators
left ,
left :, :>
left ||
left &&
left <= >= > < == !=
left & ^ |
left << >>
left + -
left * / % // %%
left |>
right <|
right ->
left juxtaposition

24 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.4.2 Patterns

We say that a pattern is irrefutable if it can never fail to match a value of the appropriate type. Concretely, this means
that it does not require any specific sum type constructor (unless the type in question has only a single constructor),
or any specific numeric or boolean literal. Patterns used in function parameters and let bindings must be irrefutable.
Patterns used in case need not be irrefutable.

A pattern _ matches any value. A pattern consisting of a literal value (e.g. a numeric constant) matches exactly that
value.

3.4.3 Semantics of Simple Expressions

literal

Evaluates to itself.

qualid

A variable name; evaluates to its value in the current environment.

stringlit

Evaluates to an array of type []i32 that contains the code points of the characters as integers.

()

Evaluates to an empty tuple.

(e)

Evaluates to the result of e.

(e1, e2, ..., eN)

Evaluates to a tuple containing N values. Equivalent to the record literal {0=e1, 1=e2, ..., N-1=eN}.

{f1, f2, ..., fN}

A record expression consists of a comma-separated sequence of field expressions. Each field expression defines the
value of a field in the record. A field expression can take one of two forms:

f = e: defines a field with the name f and the value resulting from evaluating e.

f: defines a field with the name f and the value of the variable f in scope.

Each field may only be defined once.

3.4. Expressions 25

Futhark Documentation, Release 0.17.3

a[i]

Return the element at the given position in the array. The index may be a comma-separated list of indexes instead of
just a single index. If the number of indices given is less than the rank of the array, an array is returned. The index
may be of any unsigned integer type.

The array a must be a variable name or a parenthesised expression. Furthermore, there may not be a space between a
and the opening bracket. This disambiguates the array indexing a[i], from a [i], which is a function call with a
literal array.

a[i:j:s]

Return a slice of the array a from index i to j, the former inclusive and the latter exclusive, taking every s-th element.
The s parameter may not be zero. If s is negative, it means to start at i and descend by steps of size s to j (not
inclusive). Slicing can be done only with expressions of type i32.

It is generally a bad idea for s to be non-constant. Slicing of multiple dimensions can be done by separating with
commas, and may be intermixed freely with indexing.

If s is elided it defaults to 1. If i or j is elided, their value depends on the sign of s. If s is positive, i become 0 and
j become the length of the array. If s is negative, i becomes the length of the array minus one, and j becomes minus
one. This means that a[::-1] is the reverse of the array a.

In the general case, the size of the array produced by a slice is unknown (see Size types). In a few cases, the size is
known statically:

• a[0:n] has size n

• a[:n] has size n

• a[0:n:1] has size n

• a[:n:1] has size n

This holds only if n is a variable or constant.

[x, y, z]

Create an array containing the indicated elements. Each element must have the same type and shape.

x..y...z

Construct a signed integer array whose first element is x and which proceeds stride of y-x until reaching z (inclusive).
The ..y part can be elided in which case a stride of 1 is used. A run-time error occurs if z is lesser than x or y, or if
x and y are the same value.

In the general case, the size of the array produced by a range is unknown (see Size types). In a few cases, the size is
known statically:

• 1..2...n has size n

This holds only if n is a variable or constant.

26 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

x..y..<z

Construct a signed integer array whose first elements is x, and which proceeds upwards with a stride of y until reaching
z (exclusive). The ..y part can be elided in which case a stride of 1 is used. A run-time error occurs if z is lesser
than x or y, or if x and y are the same value.

• 0..1..<n has size n

• 0..<n has size n

This holds only if n is a variable or constant.

x..y..>z

Construct a signed integer array whose first elements is x, and which proceeds downwards with a stride of y until
reaching z (exclusive). The ..y part can be elided in which case a stride of -1 is used. A run-time error occurs if z is
greater than x or y, or if x and y are the same value.

e.f

Access field f of the expression e, which must be a record or tuple.

m.(e)

Evaluate the expression e with the module m locally opened, as if by open. This can make some expressions easier
to read and write, without polluting the global scope with a declaration-level open.

x binop y

Apply an operator to x and y. Operators are functions like any other, and can be user-defined. Futhark pre-defines
certain “magical” overloaded operators that work on many different types. Overloaded functions cannot be defined by
the user. Both operands must have the same type. The predefined operators and their semantics are:

**

Power operator, defined for all numeric types.

//, %%

Division and remainder on integers, with rounding towards zero.

*, /, %, +, -

The usual arithmetic operators, defined for all numeric types. Note that / and % rounds towards
negative infinity when used on integers - this is different from in C.

^, &, |, >>, <<

Bitwise operators, respectively bitwise xor, and, or, arithmetic shift right and left, and logical
shift right. Shifting is undefined if the right operand is negative, or greater than or equal
to the length in bits of the left operand.

Note that, unlike in C, bitwise operators have higher priority than arithmetic operators. This
means that x & y == z is understood as (x & y) == z, rather than x & (y == z)
as it would in C. Note that the latter is a type error in Futhark anyhow.

==, !=

3.4. Expressions 27

Futhark Documentation, Release 0.17.3

Compare any two values of builtin or compound type for equality.

<, <=. >, >=

Company any two values of numeric type for equality.

x && y

Short-circuiting logical conjunction; both operands must be of type bool.

x || y

Short-circuiting logical disjunction; both operands must be of type bool.

f x

Apply the function f to the argument x.

#c x y z

Apply the sum type constructor #x to the payload x, y, and z. A constructor application is always assumed to be
saturated, i.e. its entire payload provided. This means that constructors may not be partially applied.

e : t

Annotate that e is expected to be of type t, failing with a type error if it is not. If t is an array with shape declarations,
the correctness of the shape declarations is checked at run-time.

Due to ambiguities, this syntactic form cannot appear as an array index expression unless it is first enclosed in paren-
theses. However, as an array index must always be of type i32, there is never a reason to put an explicit type ascription
there.

e :> t

Coerce the size of e to t. The type of t must match the type of e, except that the sizes may be statically different. At
run-time, it will be verified that the sizes are the same.

! x

Logical negation if x is of type bool. Bitwise negation if x is of integral type.

28 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

- x

Numerical negation of x, which must be of numeric type.

#[attr] e

Apply the given attribute to the expression. Attributes are an ad-hoc and optional mechanism for providing extra
information, directives, or hints to the compiler. See Attributes for more information.

unsafe e

Elide safety checks and assertions (such as bounds checking) that occur during execution of e. This is useful if the
compiler is otherwise unable to avoid bounds checks (e.g. when using indirect indexes), but you really do not want
them there. Make very sure that the code is correct; eliding such checks can lead to memory corruption.

This construct is deprecated. Use the #[unsafe] attribute instead.

assert cond e

Terminate execution with an error if cond evaluates to false, otherwise produce the result of evaluating e. Unless e
produces a value that is used subsequently (it can just be a variable), dead code elimination may remove the assertion.

a with [i] = e

Return a, but with the element at position i changed to contain the result of evaluating e. Consumes a.

r with f = e

Return the record r, but with field f changed to have value e. The type of the field must remain unchanged. Type
inference is limited: r must have a completely known type up to f. This sometimes requires extra type annotations to
make the type of r known.

if c then a else b

If c evaluates to true, evaluate a, else evaluate b.

3.4.4 Binding Expressions

let pat = e in body

Evaluate e and bind the result to the irrefutable pattern pat (see Patterns) while evaluating body. The in keyword
is optional if body is a let expression.

3.4. Expressions 29

Futhark Documentation, Release 0.17.3

let a[i] = v in body

Write v to a[i] and evaluate body. The given index need not be complete and can also be a slice, but in these cases,
the value of v must be an array of the proper size. This notation is Syntactic sugar for let a = a with [i] =
v in a.

let f params... = e in body

Bind f to a function with the given parameters and definition (e) and evaluate body. The function will be treated as
aliasing any free variables in e. The function is not in scope of itself, and hence cannot be recursive.

loop pat = initial for x in a do loopbody

1. Bind pat to the initial values given in initial.

2. For each element x in a, evaluate loopbody and rebind pat to the result of the evaluation.

3. Return the final value of pat.

The = initial can be left out, in which case initial values for the pattern are taken from equivalently named
variables in the environment. I.e., loop (x) = ... is equivalent to loop (x = x) =

loop pat = initial for x < n do loopbody

Equivalent to loop (pat = initial) for x in [0..1..<n] do loopbody.

loop pat = initial while cond do loopbody

1. Bind pat to the initial values given in initial.

2. If cond evaluates to true, bind pat to the result of evaluating loopbody, and repeat the step.

3. Return the final value of pat.

match x case p1 -> e1 case p2 -> e2

Match the value produced by x to each of the patterns in turn, picking the first one that succeeds. The result of the
corresponding expression is the value of the entire match expression. All the expressions associated with a case
must have the same type (but not necessarily match the type of x). It is a type error if there is not a case for every
possible value of x - inexhaustive pattern matching is not allowed.

3.4.5 Function Expressions

\x y z: t -> e

Produces an anonymous function taking parameters x, y, and z, returns type t, and whose body is e. Lambdas do not
permit type parameters; use a named function if you want a polymorphic function.

30 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

(binop)

An operator section that is equivalent to \x y -> x *binop* y.

(x binop)

An operator section that is equivalent to \y -> x *binop* y.

(binop y)

An operator section that is equivalent to \x -> x *binop* y.

(.a.b.c)

An operator section that is equivalent to \x -> x.a.b.c.

(.[i,j])

An operator section that is equivalent to \x -> x[i,j].

3.5 Higher-order functions

At a high level, Futhark functions are values, and can be used as any other value. However, to ensure that the compiler
is able to compile the higher-order functions efficiently via defunctionalisation, certain type-driven restrictions exist
on how functions can be used. These also apply to any record or tuple containing a function (a functional type):

• Arrays of functions are not permitted.

• A function cannot be returned from an if expression.

• A loop parameter cannot be a function.

Further, type parameters are divided into non-lifted (bound with an apostrophe, e.g. 't), size-lifted ('~t), and fully
lifted ('^t). Only fully lifted type parameters may be instantiated with a functional type. Within a function, a lifted
type parameter is treated as a functional type.

See also In-place updates for details on how uniqueness types interact with higher-order functions.

3.6 Type Inference

Futhark supports Hindley-Milner-style type inference, so in many cases explicit type annotations can be left off.
Record field projection cannot in isolation be fully inferred, and may need type annotations where their inputs are
bound. The same goes when constructing sum types, as Futhark cannot assume that a given constructor only belongs
to a single type. Further, unique types (see In-place updates) must be explicitly annotated.

3.5. Higher-order functions 31

Futhark Documentation, Release 0.17.3

3.7 Size Types

Futhark supports a simple system of size-dependent types that statically verifies that the sizes of arrays passed to a
function are compatible. The focus is on simplicity, not completeness.

Whenever a pattern occurs (in let, loop, and function parameters), as well as in return types, size annotations may
be used to express invariants about the shapes of arrays that are accepted or produced by the function. For example:

let f [n] (a: [n]i32) (b: [n]i32): [n]i32 =
map2 (+) a b

We use a size parameter, [n], to explicitly quantify sizes. The [n] parameter is not explicitly passed when calling
f. Rather, its value is implicitly deduced from the arguments passed for the value parameters. An array can contain
anonymous dimensions, e.g. []i32, for which the type checker will invent fresh size parameters, which ensures that
all arrays have a (symbolic) size.

A size annotation can also be an integer constant (with no suffix). Size parameters can be used as ordinary variables
within the scope of the parameters. The type checker verifies that the program obeys any constraints imposed by size
annotations.

Size-dependent types are supported, as the names of parameters can be used in the return type of a function:

let replicate 't (n: i32) (x: t): [n]t = ...

An application replicate 10 0 will have type [10]i32.

3.7.1 Unknown sizes

Since sizes must be constants or variables, there are many cases where the type checker cannot assign a precise size to
the result of some operation. For example, the type of concat should conceptually be:

val concat [n] [m] 't : [n]t -> [m]t -> [n+m]t

But this is not presently allowed. Instead, the return type contains an anonymous size:

val concat [n] [m] 't : [n]t -> [m]t -> []t

When an application concat xs ys is found, the result will be of type [k]t, where k is a fresh unknown size
variable that is considered distinct from every other size in the program. It is often necessary to perform a size
coercion (see Size coercion) to convert an unknown size to a known size.

Generally, unknown sizes are constructed whenever the true size cannot be expressed. The following lists all possible
sources of unknown sizes.

Size going out of scope

An unknown size is created when the proper size of an array refers to a name that has gone out of scope:

let c = a + b
in replicate c 0

The type of replicate c 0 is [c]i32, but since c is locally bound, the type of the entire expression is [k]i32
for some fresh k.

32 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

Compound expression passed as function argument

Intuitively, the type of replicate (x+y) 0 should be [x+y]i32, but since sizes must be names or constants,
this is not expressible. Therefore an unknown size variable is created and the size of the expression becomes [k]i32.

Compound expression used as range bound

While a simple range expression such as 0..<n can be assigned type [n]i32, a range expression 0..<(n+1) will
give produce an unknown size.

Complex slicing

Most complex array slicing, such as xs[a:b], will have an unknown size. Exceptions are listed in the reference for
slice expressions.

Complex ranges

Most complex ranges, such as a..<b, will have an known size. Exceptions exist for general ranges and “upto”
ranges.

Anonymous size in function return type

Whenever the result of a function application would have an anonymous size, that size is replaced with a fresh unknown
size variable.

For example, filter has the following type:

val filter [n] 'a : (p: a -> bool) -> (as: [n]a) -> []a

Naively, an application filter f xs seems like it would have type []a, but a fresh unknown size k will be created
and the actual type will be [k]a.

Branches of if return arrays of different sizes

When an if (or match) expression has branches that returns array of different sizes, the differing sizes will be
replaced with fresh unknown sizes. For example:

if b then [[1,2], [3,4]]
else [[5,6]]

This expression will have type [k][2]i32, for some fresh k.

Important: The check whether the sizes differ is done when first encountering the if or match during type checking.
At this point, the type checker may not realise that the two sizes are actually equal, even though constraints later in the
function force them to be. This can always be resolved by adding type annotations.

3.7. Size Types 33

Futhark Documentation, Release 0.17.3

An array produced by a loop does not have a known size

If the size of some loop parameter is not maintained across a loop iteration, the final result of the loop will contain
unknown sizes. For example:

loop xs = [1] for i < n do xs ++ xs

Similar to conditionals, the type checker may sometimes be too cautious in assuming that some size may change
during the loop. Adding type annotations to the loop parameter can be used to resolve this.

3.7.2 Size coercion

Size coercion, written with :>, can be used to perform a runtime-checked coercion of one size to another. Since size
annotations can refer only to variables and constants, this is necessary when writing more complicated size functions:

let concat_to 'a (m: i32) (a: []a) (b: []a) : [m]a =
a ++ b :> [m]a

Only expression-level type annotations give rise to run-time checks. Despite their similar syntax, parameter and return
type annotations must be valid at compile-time, or type checking will fail.

3.7.3 Causality restriction

Conceptually, size parameters are assigned their value by reading the sizes of concrete values passed along as param-
eters. This means that any size parameter must be used as the size of some parameter. This is an error:

let f [n] (x: i32) = n

The following is not an error:

let f [n] (g: [n]i32 -> [n]i32) = ...

However, using this function comes with a constraint: whenever an application f x occurs, the value of the size
parameter must be inferable. Specifically, this value must have been used as the size of an array before the f x
application is encountered. The notion of “before” is subtle, as there is no evaluation ordering of a Futhark expression,
except that a let-binding is always evaluated before its body, the argument to a function is always evaluated before
the function itself, and the left operand to an operator is evaluated before the right.

The causality restriction only occurs when a function has size parameters whose first use is not as a concrete array
size. For example, it does not apply to uses of the following function:

let f [n] (arr: [n]i32) (g: [n]i32 -> [n]i32) = ...

This is because the proper value of n can be read directly from the actual size of the array.

34 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.7.4 Empty array literals

Just as with size-polymorphic functions, when constructing an empty array, we must know the exact size of the
(missing) elements. For example, in the following program we are forcing the elements of a to be the same as the
elements of b, but the size of the elements of b are not known at the time a is constructed:

let main (b: bool) (xs: []i32) =
let a = [] : [][]i32
let b = [filter (>0) xs]
in a[0] == b[0]

The result is a type error.

3.7.5 Sum types

When constructing a value of a sum type, the compiler must still be able to determine the size of the constructors that
are not used. This is illegal:

type sum = #foo ([]i32) | #bar ([]i32)

let main (xs: *[]i32) =
let v : sum = #foo xs
in xs

3.7.6 Modules

When matching a module with a module type (see Module System), a non-lifted abstract type (i.e. one that is declared
with type rather than type^) may not be implemented by a type abbreviation that contains any anonymous sizes.
This is to ensure that if we have the following:

module m : { type t } = ...

Then we can construct an array of values of type m.t without worrying about constructing an irregular array.

3.7.7 Higher-order functions

When a higher-order function takes a functional argument whose return type is a non-lifted type parameter, any in-
stantiation of that type parameter must have a non-anonymous size. If the return type is a lifted type parameter, then
the instantiation may contain anonymous sizes. This is why the type of map guarantees regular arrays:

val map [n] 'a 'b : (a -> b) -> [n]a -> [n]b

The type parameter b can only be replaced with a type that has non-anonymous sizes, which means they must be the
same for every application of the function. In contrast, this is the type of the pipeline operator:

val (|>) '^a -> '^b : a -> (a -> b) -> b

The provided function can return something with an anonymous size (such as filter).

3.7. Size Types 35

Futhark Documentation, Release 0.17.3

A function whose return type has an unknown size

If a function (named or anonymous) is inferred to have a return type that contains an unknown size variable created
within the function body, that size variable will be replaced with an anonymous size. In most cases this is not important,
but it means that an expression like the following is ill-typed:

map (\xs -> iota (length xs)) (xss : [n][m]i32)

This is because the (length xs) expression gives rise to some fresh size k. The lambda is then assigned the type
[n]t -> [k]i32, which is immediately turned into [n]t -> []i32 because k was generated inside its body.
A function of this type cannot be passed to map, as explained before. The solution is to bind length to a name
before the lambda.

3.8 In-place Updates

In-place updates do not provide observable side effects, but they do provide a way to efficiently update an array in-
place, with the guarantee that the cost is proportional to the size of the value(s) being written, not the size of the full
array.

The a with [i] = v language construct, and derived forms, performs an in-place update. The compiler verifies
that the original array (a) is not used on any execution path following the in-place update. This involves also checking
that no alias of a is used. Generally, most language constructs produce new arrays, but some (slicing) create arrays
that alias their input arrays.

When defining a function parameter or return type, we can mark it as unique by prefixing it with an asterisk. For
example:

let modify (a: *[]i32) (i: i32) (x: i32): *[]i32 =
a with [i] = a[i] + x

For bulk in-place updates with multiple values, use the scatter function in the basis library. In the parameter
declaration a: *[i32], the asterisk means that the function modify has been given “ownership” of the array a,
meaning that any caller of modify will never reference array a after the call again. This allows the with expression
to perform an in-place update.

After a call modify a i x, neither a or any variable that aliases a may be used on any following execution path.

3.8.1 Alias Analysis

The rules used by the Futhark compiler to determine aliasing are intuitive in the intra-procedural case. Aliases are
associated with entire arrays. Aliases of a record are tuple are tracked for each element, not for the record or tuple
itself. Most constructs produce fresh arrays, with no aliases. The main exceptions are if, loop, function calls, and
variable literals.

• After a binding let a = b, that simply assigns a new name to an existing variable, the variable a aliases b.
Similarly for record projections and patterns.

• The result of an if aliases the union of the aliases of the components.

• The result of a loop aliases the initial values, as well as any aliases that the merge parameters may assume at
the end of an iteration, computed to a fixed point.

• The aliases of a value returned from a function is the most interesting case, and depends on whether the return
value is declared unique (with an asterisk *) or not. If it is declared unique, then it has no aliases. Otherwise, it
aliases all arguments passed for non-unique parameters.

36 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.8.2 In-place Updates and Higher-Order Functions

Uniqueness typing generally interacts poorly with higher-order functions. The issue is that we cannot control how
many times a function argument is applied, or to what, so it is not safe to pass a function that consumes its argument.
The following two conservative rules govern the interaction between uniqueness types and higher-order functions:

1. In the expression let p = e1 in ..., if any in-place update takes place in the expression e1, the value
bound by p must not be or contain a function.

2. A function that consumes one of its arguments may not be passed as a higher-order argument to another function.

3.9 Module System

mod_bind ::= "module" id mod_param* "=" [":" mod_type_exp] "=" mod_exp
mod_param ::= "(" id ":" mod_type_exp ")"
mod_type_bind ::= "module" "type" id type_param* "=" mod_type_exp

Futhark supports an ML-style higher-order module system. Modules can contain types, functions, and other modules
and module types. Module types are used to classify the contents of modules, and parametric modules are used to
abstract over modules (essentially module-level functions). In Standard ML, modules, module types and parametric
modules are called structs, signatures, and functors, respectively. Module names exist in the same name space as
values, but module types are their own name space.

Named modules are declared as:

module name = ...

A named module type is defined as:

module type name = ...

Where a module expression can be the name of another module, an application of a parametric module, or a sequence
of declarations enclosed in curly braces:

module Vec3 = {
type t = (f32 , f32 , f32)
let add(a: t) (b: t): t =
let (a1, a2, a3) = a in
let (b1, b2, b3) = b in
(a1 + b1, a2 + b2 , a3 + b3)

}

module AlsoVec3 = Vec3

Functions and types within modules can be accessed using dot notation:

type vector = Vec3.t
let double(v: vector): vector = Vec3.add v v

We can also use open Vec3 to bring the names defined by Vec3 into the current scope. Multiple modules can be
opened simultaneously by separating their names with spaces. In case several modules define the same names, the
ones mentioned last take precedence. The first argument to open may be a full module expression.

Named module types are defined as:

3.9. Module System 37

Futhark Documentation, Release 0.17.3

module type ModuleTypeName = ...

A module type expression can be the name of another module type, or a sequence of specifications, or specs, enclosed
in curly braces. A spec can be a value spec, indicating the presence of a function or value, an abstract type spec, or a
type abbreviation spec. For example:

module type Addable = {
type t -- abstract type spec
type two_ts = (t,t) -- type abbreviation spec
val add: t -> t -> t -- value spec

}

This module type specifies the presence of an abstract type t, as well as a function operating on values of type t. We
can use module type ascription to restrict a module to what is exposed by some module type:

module AbstractVec = Vec3 : Addable

The definition of AbstractVec.t is now hidden. In fact, with this module type, we can neither construct values of
type AbstractVec.T or convert them to anything else, making this a rather useless use of abstraction. As a derived
form, we can write module M: S = e to mean module M = e : S.

In a value spec, sizes in types on the left-hand side of a function arrow must not be anonymous. For example, this is
forbidden:

val sum: []t -> t

Instead write:

val sum [n]: [n]t -> t

But this is allowed, because the empty size is not to the left of a function arrow:

val evens [n]: [n]i32 -> []i32

Parametric modules allow us to write definitions that abstract over modules. For example:

module Times = \(M: Addable) -> {
let times (x: M.t) (k: i32): M.t =
loop x' = x for i < k do

M.add x' x
}

We can instantiate Times with any module that fulfils the module type Addable and get back a module that defines
a function times:

module Vec3Times = Times Vec3

Now Vec3Times.times is a function of type Vec3.t -> int -> Vec3.t. As a derived form, we can write
module M p = e to mean module M = \p -> e.

38 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.9.1 Module Expressions

mod_exp ::= qualid
| mod_exp ":" mod_type_exp
| "\" "(" id ":" mod_type_exp ")" [":" mod_type_exp] "->" mod_exp
| mod_exp mod_exp
| "(" mod_exp ")"
| "{" dec* "}"
| "import" stringlit

A module expression produces a module. Modules are collections of bindings produced by declarations (dec). In
particular, a module may contain other modules or module types.

qualid

Evaluates to the module of the given name.

(mod_exp)

Evaluates to mod_exp.

mod_exp : mod_type_exp

Module ascription evaluates the module expression and the module type expression, verifies that the module imple-
ments the module type, then returns a module that exposes only the functionality described by the module type. This
is how internal details of a module can be hidden.

\(p: mt1): mt2 -> e

Constructs a parametric module (a function at the module level) that accepts a parameter of module type mt1 and
returns a module of type mt2. The latter is optional, but the parameter type is not.

e1 e2

Apply the parametric module m1 to the module m2.

{ decs }

Returns a module that contains the given definitions. The resulting module defines any name defined by any declaration
that is not local, in particular including names made available via open.

3.9. Module System 39

Futhark Documentation, Release 0.17.3

import "foo"

Returns a module that contains the definitions of the file "foo" relative to the current file. See Referring to Other
Files.

3.9.2 Module Type Expressions

mod_type_exp ::= qualid
| "{" spec* "}"
| mod_type_exp "with" qualid type_param* "=" type
| "(" mod_type_exp ")"
| "(" id ":" mod_type_exp ")" "->" mod_type_exp
| mod_type_exp "->" mod_type_exp

spec ::= "val" id type_param* ":" spec_type
| "val" binop type_param* ":" spec_type
| "type" ["^"] id type_param* "=" type
| "type" ["^"] id type_param*
| "module" id ":" mod_type_exp
| "include" mod_type_exp
| "#[" attr "]" spec

spec_type ::= type | type "->" spec_type

Module types classify modules, with the only (unimportant) difference in expressivity being that modules can contain
module types, but module types cannot specify that a module must contain a specific module type. They can specify
of course that a module contains a submodule of a specific module type.

3.10 Referring to Other Files

You can refer to external files in a Futhark file like this:

import "file"

The above will include all non-local top-level definitions from file.fut is and make them available in the current
file (but will not export them). The .fut extension is implied.

You can also include files from subdirectories:

import "path/to/a/file"

The above will include the file path/to/a/file.fut relative to the including file.

Qualified imports are also possible, where a module is created for the file:

module M = import "file"

In fact, a plain import "file" is equivalent to:

local open import "file"

40 Chapter 3. Language Reference

Futhark Documentation, Release 0.17.3

3.11 Attributes

attr ::= id
| id "(" [attr ("," attr)*] ")"

An expression, declaration, or module type spec can be prefixed with an attribute, written as #[attr]. This may
affect how it is treated by the compiler or other tools. In no case will attributes affect or change the semantics of
a program, but it may affect how well it compiles and runs (or in some cases, whether it compiles or runs at all).
Unknown attributes are silently ignored. Most have no effect in the interpreter. An attribute can be either an atom,
written as just an identifier, or compound, consisting of an identifier and a comma-separated sequence of attributes.
The latter is used for grouping and encoding of more complex information.

3.11.1 Expression attributes

Many expression attributes affect second-order array combinators (SOACS). These must be applied to a fully saturated
function application or they will have no effect. If two SOACs with contradictory attributes are combined through
fusion, it is unspecified which attributes take precedence.

The following expression attributes are supported.

incremental_flattening(no_outer)

When using incremental flattening, do not generate the “only outer parallelism” version for the attributed SOACs.

incremental_flattening(no_intra)

When using incremental flattening, do not generate the “intra-group parallelism” version for the attributed SOACs.

incremental_flattening(only_intra)

When using incremental flattening, only generate the “intra-group parallelism” version of the attributed SOACs. Be-
ware: the resulting program will fail to run if the inner parallelism does not fit on the device.

incremental_flattening(only_inner)

When using incremental flattening, do not generate multiple versions for this SOAC, but do exploit inner parallelism
(which may give rise to multiple versions at deeper levels).

noinline

Do not inline the attributed function application. If used within a parallel construct (e.g. map), this will likely prevent
the GPU backends from generating working code.

3.11. Attributes 41

Futhark Documentation, Release 0.17.3

sequential

Fully sequentialise the attributed SOAC.

sequential_outer

Turn the outer parallelism in the attributed SOAC sequential, but preserve any inner parallelism.

sequential_inner

Exploit only outer parallelism in the attributed SOAC.

unroll

Fully unroll the attributed loop. If the compiler cannot determine the exact number of iterations (possibly after
other optimisations and simplifications have taken place), then this attribute has no code generation effect, but instead
results in a warning. Be very careful with this attribute: it can massively increase program size (possibly crashing the
compiler) if the loop has a huge number of iterations.

unsafe

Do not perform any dynamic safety checks (such as bound checks) during execution of the attributed expression.

warn(safety_checks)

Make the compiler issue a warning if the attributed expression (or its subexpressions) requires safety checks (such as
bounds checking) at run-time. This is used for performance-critical code where you want to be told when the compiler
is unable to statically verify the safety of all operations.

3.11.2 Declaration attributes

The following declaration attributes are supported.

noinline

Do not inline any calls to this function. If the function is then used within a parallel construct (e.g. map), this will
likely prevent the GPU backends from generating working code.

3.11.3 Spec attributes

No spec attributes are currently supported by the compiler itself, although they are syntactically permitted and may be
used by other tools.

42 Chapter 3. Language Reference

CHAPTER

FOUR

C API REFERENCE

A Futhark program futlib.fut compiled to a C library with the --library command line option produces two
files: futlib.c and futlib.h. The API provided in the .h file is documented in the following.

Using the API requires creating a configuration object, which is then used to obtain a context object, which is then
used to perform most other operations, such as calling Futhark functions.

Most functions that can fail return an integer: 0 on success and a non-zero value on error. Others return a NULL
pointer. Use futhark_context_get_error() to get a (possibly) more precise error message.

FUTHARK_BACKEND_foo
A preprocessor macro identifying that the backend foo was used to generate the code; e.g. c, opencl, or cuda.
This can be used for conditional compilation of code that only works with specific backends.

4.1 Configuration

Context creation is parameterised by a configuration object. Any changes to the configuration must be made before
calling futhark_context_new(). A configuration object must not be freed before any context objects for which
it is used. The same configuration may be used for multiple concurrent contexts.

struct futhark_context_config
An opaque struct representing a Futhark configuration.

struct futhark_context_config *futhark_context_config_new(void)
Produce a new configuration object. You must call futhark_context_config_free() when you are
done with it.

void futhark_context_config_free(struct futhark_context_config *cfg)
Free the configuration object.

void futhark_context_config_set_debugging(struct futhark_context_config *cfg, int flag)
With a nonzero flag, enable various debugging information, with the details specific to the backend. This may
involve spewing copious amounts of information to the standard error stream. It is also likely to make the
program run much slower.

void futhark_context_config_set_profiling(struct futhark_context_config *cfg, int flag)
With a nonzero flag, enable the capture of profiling information. This should not significantly impact program
performance. Use futhark_context_report() to retrieve captured information, the details of which are
backend-specific.

void futhark_context_config_set_logging(struct futhark_context_config *cfg, int flag)
With a nonzero flag, print a running log to standard error of what the program is doing.

43

Futhark Documentation, Release 0.17.3

4.2 Context

struct futhark_context
An opaque struct representing a Futhark context.

struct futhark_context *futhark_context_new(struct futhark_context_config *cfg)
Create a new context object. You must call futhark_context_free() when you are done with it. It is
fine for multiple contexts to co-exist within the same process, but you must not pass values between them. They
have the same C type, so this is an easy mistake to make.

After you have created a context object, you must immediately call futhark_context_get_error(),
which will return non-NULL if initialisation failed. If initialisation has failed, then you still need to call
futhark_context_free() to release resources used for the context object, but you may not use the con-
text object for anything else.

void futhark_context_free(struct futhark_context *ctx)
Free the context object. It must not be used again. The configuration must be freed separately with
futhark_context_config_free().

int futhark_context_sync(struct futhark_context *ctx)
Block until all outstanding operations, including copies, have finished executing. Many API functions are
asynchronous on their own.

void futhark_context_pause_profiling(struct futhark_context *ctx)
Temporarily suspend the collection of profiling information. Has no effect if profiling was not enabled in the
configuration.

void futhark_context_unpause_profiling(struct futhark_context *ctx)
Resume the collection of profiling information. Has no effect if profiling was not enabled in the configuration.

char *futhark_context_get_error(struct futhark_context *ctx)
A human-readable string describing the last error, if any. It is the caller’s responsibility to free() the returned
string. Any subsequent call to the function returns NULL, until a new error occurs.

char *futhark_context_report(struct futhark_context *ctx)
Produce a human-readable C string with debug and profiling information collected during pro-
gram runtime. It is the caller’s responsibility to free the returned string. It is likely
to only contain interesting information if futhark_context_config_set_debugging() or
futhark_context_config_set_profiling() has been called previously.

int futhark_context_clear_caches(struct futhark_context *ctx)
Release any context-internal caches and buffers that may otherwise use computer resources. This is useful for
freeing up those resources when no Futhark entry points are expected to run for some time. Particularly relevant
when using a GPU backend, due to the relative scarcity of GPU memory.

4.3 Values

Primitive types (i32, bool, etc) are mapped directly to their corresponding C type. For each distinct array type
(without sizes), an opaque C struct is defined. Complex types (records, nested tuples) are also assigned an opaque
C struct. In the general case, these types will be named with a random hash. However, if you insert an explicit type
annotation (and the type name contains only characters valid for C identifiers), the indicated name will be used. Note
that arrays contain brackets, which are usually not valid in identifiers. Defining a simple type alias is the best way
around this.

All values share a similar API, which is illustrated here for the case of the type []i32. The creation/retrieval functions
are all asynchronous, so make sure to call futhark_context_sync() when appropriate. Memory management
is entirely manual. All values that are created with a new function, or returned from an entry point, must at some point

44 Chapter 4. C API Reference

Futhark Documentation, Release 0.17.3

be freed manually. Values are internally reference counted, so even for entry points that return their input unchanged,
you should still free both the input and the output - this will not result in a double free.

struct futhark_i32_1d
An opaque struct representing a Futhark value of type []i32.

struct futhark_i32_1d *futhark_new_i32_1d(struct futhark_context *ctx, int32_t *data, int64_t
dim0)

Asynchronously create a new array based on the given data. The dimensions express the number of
elements. The data is copied into the new value. It is the caller’s responsibility to eventually call
futhark_free_i32_1d(). Multi-dimensional arrays are assumed to be in row-major form.

struct futhark_i32_1d *futhark_new_raw_i32_1d(struct futhark_context *ctx, char *data, int off-
set, int64_t dim0)

Create an array based on raw data, as well as an offset into it. This differs little from futhark_i32_1d()
when using the c backend, but when using e.g. the opencl backend, the data parameter will be a cl_mem.
It is the caller’s responsibility to eventually call futhark_free_i32_1d().

int futhark_free_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr)
Free the value. In practice, this merely decrements the reference count by one. The value (or at least this
reference) may not be used again after this function returns.

int futhark_values_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr, int32_t
*data)

Asynchronously copy data from the value into data, which must be of sufficient size. Multi-dimensional arrays
are written in row-major form.

const int64_t *futhark_shape_i32_1d(struct futhark_context *ctx, struct futhark_i32_1d *arr)
Return a pointer to the shape of the array, with one element per dimension. The lifetime of the shape is the same
as arr, and should not be manually freed.

4.4 Entry points

Entry points are mapped 1:1 to C functions. Return values are handled with out-parameters.

For example, this Futhark entry point:

entry sum = i32.sum

Results in the following C function:

int futhark_entry_main(struct futhark_context *ctx, int32_t *out0, const struct futhark_i32_1d
*in0)

Asynchronously call the entry point with the given arguments. Make sure to call
futhark_context_sync() before using the value of out0.

The exact behaviour of the exit code depends on the backend. For the sequential C backend, errors will always be
available when the entry point returns, and futhark_context_sync() will always return success. When using a
GPU backend such as cuda or opencl, the entry point may still be running asynchronous operations when it returns,
in which case the entry point may return zero successfully, even though execution has already (or will) fail. These
problems will be reported when futhark_context_sync() is called. When using GPU backends, be careful to
check the return code of both the entry point itself, and futhark_context_sync().

4.4. Entry points 45

Futhark Documentation, Release 0.17.3

4.5 GPU

The following API functions are available when using the opencl or cuda backends.

void futhark_context_config_set_device(struct futhark_context_config *cfg, const char *s)
Use the first device whose name contains the given string. The special string #k, where k is an
integer, can be used to pick the k-th device, numbered from zero. If used in conjunction with
futhark_context_config_set_platform(), only the devices from matching platforms are consid-
ered.

4.5.1 Exotic

The following functions are not interesting to most users.

void futhark_context_config_set_default_group_size(struct futhark_context_config
*cfg, int size)

Set the default number of work-items in a work-group.

void futhark_context_config_set_default_num_groups(struct futhark_context_config
*cfg, int num)

Set the default number of work-groups used for kernels.

void futhark_context_config_set_default_tile_size(struct futhark_context_config *cfg,
int num)

Set the default tile size used when executing kernels that have been block tiled.

void futhark_context_config_dump_program_to(struct futhark_context_config *cfg, const
char *path)

During futhark_context_new(), dump the OpenCL or CUDA program source to the given file.

void futhark_context_config_load_program_from(struct futhark_context_config *cfg,
const char *path)

During futhark_context_new(), read OpenCL or CUDA program source from the given file instead of
using the embedded program.

4.6 OpenCL

The following API functions are available only when using the opencl backend.

void futhark_context_config_set_platform(struct futhark_context_config *cfg, const char
*s)

Use the first OpenCL platform whose name contains the given string. The special string #k, where k is an
integer, can be used to pick the k-th platform, numbered from zero.

void futhark_context_config_select_device_interactively(struct
futhark_context_config
*cfg)

Immediately conduct an interactive dialogue on standard output to select the platform and device from a list.

struct futhark_context *futhark_context_new_with_command_queue(struct
futhark_context_config
*cfg,
cl_command_queue
queue)

Construct a context that uses a pre-existing command queue. This allows the caller to directly customise which
device and platform is used.

46 Chapter 4. C API Reference

Futhark Documentation, Release 0.17.3

cl_command_queue futhark_context_get_command_queue(struct futhark_context *ctx)
Retrieve the command queue used by the Futhark context. Be very careful with it - enqueueing your own work
is unlikely to go well.

4.6.1 Exotic

The following functions are used for debugging generated code or advanced usage.

void futhark_context_config_add_build_option(struct futhark_context_config *cfg, const
char *opt)

Add a build option to the OpenCL kernel compiler. See the OpenCL specification for clBuildProgram for
available options.

void futhark_context_config_dump_binary_to(struct futhark_context_config *cfg, const
char *path)

During futhark_context_new(), dump the compiled OpenCL binary to the given file.

void futhark_context_config_load_binary_from(struct futhark_context_config *cfg, const
char *path)

During futhark_context_new(), read a compiled OpenCL binary from the given file instead of using the
embedded program.

4.7 CUDA

The following API functions are available when using the cuda backend.

4.7.1 Exotic

The following functions are used for debugging generated code or advanced usage.

void futhark_context_config_add_nvrtc_option(struct futhark_context_config *cfg, const
char *opt)

Add a build option to the NVRTC compiler. See the CUDA documentation for nvrtcCompileProgram for
available options.

void futhark_context_config_dump_ptx_to(struct futhark_context_config *cfg, const char
*path)

During futhark_context_new(), dump the generated PTX code to the given file.

void futhark_context_config_load_ptx_from(struct futhark_context_config *cfg, const char
*path)

During futhark_context_new(), read PTX code from the given file instead of using the embedded pro-
gram.

4.8 General guarantees

Calling an entry point, or interacting with Futhark values through the functions listed above, has no system-wide
side effects, such as writing to the file system, launching processes, or performing network connections. Defects in the
program or Futhark compiler itself can with high probability result only in the consumption of CPU or GPU resources,
or a process crash.

Using the #[unsafe] attribute with in-place updates can result in writes to arbitrary memory locations. A malicious
program can likely exploit this to obtain arbitrary code execution, just as with any insecure C program. If you must
run untrusted code, consider using the --safe command line option to instruct the compiler to disable #[unsafe].

4.7. CUDA 47

Futhark Documentation, Release 0.17.3

Initialising a Futhark context likewise has no side effects, except if explicitly configured differently, such as by using
futhark_context_config_dump_program_to(). In its default configuration, Futhark will not access the
file system.

Note that for the GPU backends, the underlying API (such as CUDA or OpenCL) may perform file system operations
during startup, and perhaps for caching GPU kernels in some cases. This is beyond Futhark’s control.

48 Chapter 4. C API Reference

CHAPTER

FIVE

PACKAGE MANAGEMENT

This document describes futhark pkg, a minimalistic package manager inspired by vgo. A Futhark package is
a downloadable collection of .fut files and little more. There is a (not necessarily comprehensive) list of known
packages.

5.1 Basic Concepts

A package is uniquely identified with a package path, which is similar to a URL, except without a protocol. At the
moment, package paths are always links to Git repositories hosted on GitHub or GitLab. In the future, this will become
more flexible. As an example, a package path may be github.com/athas/fut-foo.

Packages are versioned with semantic version numbers of the form X.Y.Z. Whenever versions are indicated, all three
digits must always be given (that is, 1.0 is not a valid shorthand for 1.0.0).

Most futhark pkg operations involve reading and writing a package manifest, which is always stored in a file
called futhark.pkg. The futhark.pkg file is human-editable, but is in day-to-day use mainly modified by
futhark pkg automatically.

5.2 Using Packages

Required packages can be added by using futhark pkg add, for example:

$ futhark pkg add github.com/athas/fut-foo 0.1.0

This will create a new file futhark.pkg with the following contents:

require {
github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733

}

This lists one required package, with its package path, minimum version (see Version Selection), and the expected
commit hash. The latter is used for verification, to ensure that the contents of a package version cannot be changed
silently.

futhark pkg will perform network requests to determine whether a package of the given name and with the given
version exists and fail otherwise (but it will not check whether the package is otherwise well-formed). The version
number can be elided, in which case futhark pkg will use the newest available version. If the package is already
present in futhark.pkg, it will simply have its version requirement changed to the one specified in the command.
Any dependencies of the package will not be added to futhark.pkg, but will still be downloaded by futhark
pkg sync (see below).

49

https://research.swtch.com/vgo
https://futhark-lang.org/pkgs
https://futhark-lang.org/pkgs
https://semver.org/

Futhark Documentation, Release 0.17.3

Adding a package with futhark pkg add modifies futhark.pkg, but does not download the package files.
This is done with futhark pkg sync (without further options). The contents of each required dependency and
any transitive dependencies will be stored in a subdirectory of lib/ corresponding to their package path. As an
example:

$ futhark pkg sync
$ tree lib
lib

github.com
athas

fut-foo
foo.fut

3 directories, 1 file

Warning: futhark pkg sync will remove any unrecognized files or local modifications to files in lib/ (except
of course the package directory of the package path listed in futhark.pkg; see Creating Packages).

Packages can be removed from futhark.pkg with:

$ futhark pkg remove pkgpath

You will need to run futhark pkg sync to actually remove the files in lib/.

The intended usage is that futhark.pkg is added to version control, but lib/ is not, as the contents of lib/ can
always be reproduced from futhark.pkg. However, adding lib/ works just fine as well.

5.2.1 Importing Files from Dependencies

futhark pkg sync will populate the lib/ directory, but does not interact with the compiler in any way. The
downloaded files can be imported using the usual import mechanism (Referring to Other Files); for example, as-
suming the package contains a file foo.fut:

import "lib/github.com/athas/fut-foo/foo"

Ultimately, everything boils down to ordinary file system semantics. This has the downside of relatively long and
clumsy import paths, but the upside of predictability.

5.2.2 Upgrading Dependencies

The futhark pkg upgrade command will update every version requirement in futhark.pkg to be the most
recent available version. You still need to run futhark pkg sync to actually retrieve the new versions. Be careful
- while upgrades are safe if semantic versioning is followed correctly, this is not yet properly machine-checked, so
human mistakes may occur.

As an example:

$ cat futhark.pkg
require {

github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733
}
$ futhark pkg upgrade
Upgraded github.com/athas/fut-foo 0.1.0 => 0.2.1.
$ cat futhark.pkg
require {

(continues on next page)

50 Chapter 5. Package Management

Futhark Documentation, Release 0.17.3

(continued from previous page)

github.com/athas/fut-foo 0.2.1 #3ddc9fc93c1d8ce560a3961e55547e5c78bd0f3e
}
$ futhark pkg sync
$ tree lib
lib

github.com
athas

fut-bar
bar.fut

fut-foo
foo.fut

4 directories, 2 files

Note that fut-foo 0.2.1 depends on github.com/athas/fut-bar, so it was fetched by futhark pkg
sync.

futhark pkg upgrade will never upgrade across a major version number. Due to the principle of Semantic
Import Versioning, a new major version is a completely different package from the point of view of the package
manager. Thus, to upgrade to a new major version, you will need to use futhark pkg add to add the new version
and futhark pkg remove to remove the old version. Or you can keep it around - it is perfectly acceptable to
depend on multiple major versions of the same package, because they are really different packages.

5.3 Creating Packages

A package is a directory tree (which at the moment must correspond to a Git repository). It must contain two things:

• A file futhark.pkg at the root defining the package path and any required packages.

• A package directory lib/pkg-path, where pkg-path is the full package path.

The contents of the package directory is what will be made available to users of the package. The repository may
contain other things (tests, data files, examples, docs, other programs, etc), but these are ignored by futhark pkg.
This structure can be created automatically by running for example:

$ futhark pkg init github.com/sturluson/edda

Note again, no https://. The result is this futhark.pkg:

package github.com/sturluson/edda

require {
}

And this file hierarchy:

$ tree lib
lib

github.com
sturluson

edda

3 directories, 0 files

Note that futhark pkg init is not necessary simply to use packages, only when creating packages.

5.3. Creating Packages 51

https://research.swtch.com/vgo-import
https://research.swtch.com/vgo-import

Futhark Documentation, Release 0.17.3

When creating a package, the .fut files we are writing will be located inside the lib/ directory. If the package
has its own dependencies, whose files we would like to access, we can use relative imports. For example, assume
we are creating a package github.com/sturluson/edda and we are writing a Futhark file located at lib/
github.com/sturluson/edda/saga.fut. Further, we have a dependency on the package github.com/
athas/foo-fut, which is stored in the directory lib/github.com/athas/foo-fut. We can import a file
lib/github.com/athas/foo-fut/foo.fut from lib/github.com/sturluson/edda/saga.fut
with:

import "../foo-fut/foo"

5.3.1 Releasing a Package

Currently, a package corresponds exactly to a GitHub repository mirroring the package path. A release is done by tag-
ging an appropriate commit with git tag vX.Y.Z and then pushing the tag to GitHub with git push --tags.
In the future, this will be generalised to other code hosting sites and version control systems (and possibly self-hosted
tarballs). Remember to take semantic versioning into account - unless you bump the major version number (or the
major version is 0), the new version must be fully compatible with the old.

When releasing a new package, consider getting it added to the central package list. See this page for details.

5.3.2 Incrementing the Major Version Number

While backwards-incompatible modifications to a package are sometimes unavoidable, it is wise to avoid them as
much as possible, as they significantly inconvenience users. To discourage breaking compatibility, futhark pkg
tries to ensure that the package developer feels this inconvenience as well. In many cases, an incompatible change can
be avoided simply by adding new files to the package rather than incompatibly changing the existing ones.

In the general case, the package path also encodes the major version of the package, separated with a @. For example,
version 5.2.1 of a package might have the package path github.com/user/repo@5. For major versions 0 and
1, this can be elided. This means that multiple (major) versions of a package are completely distinct from the point
of view of the package manager - this principle is called Semantic Import Versioning, and is intended to facilitate
backwards compatibility of packages when new versions are released.

If you really must increment the major version, then you will need to change the package path in futhark.pkg
to contain the new major version preceded by @. For example, lib/github.com/sturluson/edda becomes
lib/github.com/sturluson/edda@2. As a special case, this is not necessary when moving from major
version 0 to 1. Since the package path has changed, you will also need to rename the package directory in lib/.
This is painful and awkward, but it is less painful and awkward than what users feel when their dependencies break
compatibility.

5.3.3 Renaming a Package

It is likely that the hosting location for a very long-lived package will change from time to time. Since the hosting
location is embedded into the package path itself, this causes some issues for futhark pkg.

In simple cases, there is no problem. Consider a package github.com/asgard/loki which is moved to
github.com/utgard/loki. If no GitHub-level redirect is set up, all users must update the path by which they
import the package. This is unavoidable, unfortunately.

However, the old tagged versions, which contain a futhark.pkg that uses the old package path, will continue
to work. This is because the package path indicated in package.pkg merely defines the subdirectory of lib/
where the package files are to be found, while the package path used by dependents in the require section defines
where the package files are located after futhark pkg sync. Thus, when we import an old version of github.
com/utgard/loki whose futhark.pkg defines the package as github.com/asgard/loki, the package

52 Chapter 5. Package Management

https://futhark-lang.org/pkgs
https://github.com/diku-dk/futhark-docbot/blob/master/README.md
https://research.swtch.com/vgo-import

Futhark Documentation, Release 0.17.3

files will be retrieved from the lib/github.com/asgard/loki directory in the repository, but stored at lib/
github.com/utgard/loki in the local directory.

The above means that package management remains operational in simple cases of renaming, but it is awkward when
a transitive dependency is renamed (or deleted). The Futhark package ecosystem is sufficiently embryonic that we
have not yet developed more robust solutions. When such solutions are developed, they will likely involve some form
of replace directive that allows transparent local renaming of packages, as well as perhaps a central registry of
package paths that does not depend on specific source code hosts.

5.4 Version Selection

The package manifest futhark.pkg declares which packages the program depends on. Dependencies are specified
as the oldest acceptable version within the given major version. Upper version bounds are not supported, as strict
adherence to semantic versioning is assumed, so any later version with the same major version number should work.
When futhark pkg sync calculates which version of a given package to download, it will pick the oldest version
that still satisfies the minimum version requirements of that package in all transitive dependencies. This means that a
version may be used that is newer than the one indicated in futhark.pkg, but only if a dependency requires a more
recent version.

5.5 Tests and Documentation for Dependencies

Package management has been designed to ensure that the normal development tools work as expected with the
contents of the lib/ directory. For example, to ensure that all dependencies do in fact work well (or at least compile)
together, run:

futhark test lib

Also, you can generate hyperlinked documentation for all dependencies with:

futhark doc lib -o docs

The file docs/index.html can be opened in a web browser to browse the documentation. Prebuilt documentation
is also available via the online package list.

5.6 Safety

In contrast to some other package managers, futhark pkg does not run any package-supplied code on installa-
tion, upgrade, or removal. This means that all futhark pkg operations are in principle completely safe (barring
exploitable bugs in futhark pkg itself, which is unlikely but not impossible). Further, Futhark code itself is also
completely pure, so executing it cannot have any unfortunate effects, such as infecting all of your own packages with a
worm. The worst it can do is loop infinitely, consume arbitrarily large amounts of memory, or produce wrong results.

The exception is packages that uses unsafe. With some cleverness, unsafe can be combined with in-place updates
to perform arbitrary memory reads and writes, which can trivially lead to exploitable behaviour. You should not use
untrusted code that employs unsafe (but the --safe compiler option may help). However, this is not any worse
than calling external code in a conventional impure language, which generally can perform any conceivable harmful
action.

5.4. Version Selection 53

https://futhark-lang.org/pkgs
https://jamie.build/how-to-build-an-npm-worm
https://jamie.build/how-to-build-an-npm-worm

Futhark Documentation, Release 0.17.3

54 Chapter 5. Package Management

CHAPTER

SIX

C PORTING GUIDE

This short document contains a collection of tips and tricks for porting simple numerical C code to Futhark. Futhark’s
sequential fragment is powerful enough to permit a rather straightforward translation of sequential C code that does
not rely on pointer mutation. Additionally, we provide hints on how to recognise C coding patterns that are symptoms
of C’s weak type system, and how better to organise it in Futhark.

One intended audience of this document is a programmer who needs to translate a benchmark application written in
C, or needs to use a simple numerical algorithm that is already available in the form of C source code.

6.1 Where This Guide Falls Short

Some C code makes use of unstructured returns and nonlocal exits (return inside loops, for example). These are not
easy to express in Futhark, and will require massaging the control flow a bit. C code that uses goto is likewise not
easy to port.

6.2 Types

Futhark provides scalar types that match the ones commonly used in C: u8/u16/u32/u64 for the unsigned integers,
i8/i16/i32/i64 for the signed, and f32/f64 for float and double respectively. In contrast to C, Futhark does
not automatically promote types in expressions - you will have to manually make sure that both operands to e.g. a
multiplication are of the exact same type. This means that you will need to understand exactly which types a given
expression in original C program operates on, which generally boils down to converting the type of the (type-wise)
smaller operand to that of the larger. Note that the Futhark bool type is not considered a number.

6.3 Operators

Most of the C operators can be found in Futhark with their usual names. Note however that the Futhark / and %
operators for integers round towards negative infinity, whereas their counterparts in C round towards zero. You can
write // and %% if you want the C behaviour. There is no difference if both operands are non-zero, but // and %%
may be slightly faster. For unsigned numbers, they are exactly the same.

55

Futhark Documentation, Release 0.17.3

6.4 Variable Mutation

As a sequential language, most C programs quite obviously rely heavily on mutating variables. However, in many
programs, this is done in a static manner without indirection through pointers (except for arrays; see below), which is
conceptually similar to just declaring a new variable of the same name that shadows the old one. If this is the case, a
C assignment can generally be translated to just a let-binding. As an example, let us consider the following function
for computing the modular multiplicative inverse of a 16-bit unsigned integer (part of the IDEA encryption algorithm):

static uint16_t ideaInv(uint16_t a) {
uint32_t b;
uint32_t q;
uint32_t r;
int32_t t;
int32_t u;
int32_t v;

b = 0x10001;
u = 0;
v = 1;

while(a > 0)
{

q = b / a;
r = b % a;

b = a;
a = r;

t = v;
v = u - q * v;
u = t;

}

if(u < 0)
u += 0x10001;

return u;
}

Each iteration of the loop mutates the variables a, b, v, and u in ways that are visible to the following iteration.
Conversely, the “mutations” of q, r, and t are not truly mutations, and the variable declarations could be moved
inside the loop if we wished. Presumably, the C programmer left them outside for aesthetic reasons. When translating
such code, it is important to determine exactly how much true mutation is going on, and how much is just reuse of
variable space. This can usually be done by checking whether a variable is read before it is written in any given
iteration - if not, then it is not true mutation. The variables that change value from one iteration of the loop to the next
will need to be maintained as merge parameters of the Futhark do-loop.

The Futhark program resulting from a straightforward port looks as follows:

let main(a: u16): u32 =
let b = 0x10001u32
let u = 0i32
let v = 1i32 in
let (_,_,u,_) = loop ((a,b,u,v)) while a > 0u16 do
let q = b / u32.u16(a)
let r = b % u32.u16(a)

(continues on next page)

56 Chapter 6. C Porting Guide

Futhark Documentation, Release 0.17.3

(continued from previous page)

let b = u32.u16(a)
let a = u16.u32(r)

let t = v
let v = u - i32.u32 (q) * v
let u = t in
(a,b,u,v)

in u32.i32(if u < 0 then u + 0x10001 else u)

Note the heavy use of type conversion and type suffixes for constants. This is necessary due to Futhark’s lack of
implicit conversions. Note also the conspicuous way in which the do-loop is written - the result of a loop iteration
consists of variables whose names are identical to those of the merge parameters.

This program can still be massaged to make it more idiomatic Futhark - for example, the variable t only serves to store
the old value of v that is otherwise clobbered. This can be written more elegantly by simply inlining the expressions
in the result part of the loop body.

6.5 Arrays

Dynamically sized multidimensional arrays are somewhat awkward in C, and are often simulated via single-
dimensional arrays with explicitly calculated indices:

a[i * M + j] = foo;

This indicates a two-dimensional array a whose inner dimension is of size M. We can usually look at where a is
allocated to figure out what the size of the outer dimension must be:

a = malloc(N * M * sizeof(int));

We see clearly that a is a two-dimensional integer array of size N times M - or of type [N][M]i32 in Futhark. Thus,
the update expression above would be translated as:

let a[i,j] = foo in
...

C programs usually first allocate an array, then enter a loop to provide its initial values. This is not possible in Futhark
- consider whether you can write it as a replicate, an iota, or a map. In the worst case, use replicate to
obtain an array of the desired size, then use a do-loop with in-place updates to initialise it (but note that this will run
stricly sequentially).

6.5. Arrays 57

Futhark Documentation, Release 0.17.3

58 Chapter 6. C Porting Guide

CHAPTER

SEVEN

FUTHARK COMPARED TO OTHER FUNCTIONAL LANGUAGES

This guide is intended for programmers who are familiar with other functional languages and want to start working
with Futhark.

Futhark is a simple language with a complex compiler. Functional programming is fundamentally well suited to data-
parallelism, so Futhark’s syntax and underlying concepts are taken directly from established functional languages;
mostly from Haskell and the members of the ML family. While Futhark does add a few small conveniences (built-in
array types) and one complicated and unusual feature (in-place updates via uniqueness types, see In-place Updates),
a programmer familiar with a common functional language should be able to understand the meaning of a Futhark
program, and quickly begin writing their own programs. To speed up this process, we describe here some of the
various quirks and unexpected limitations imposed by Futhark. We also recommended reading some of the example
programs along with this guide. The guide does not cover all Futhark features worth knowing, so do also skim
Language Reference.

7.1 Basic Syntax

Futhark uses a keyword-based structure, with optional indentation solely for human readability. This aspect differs
from Haskell and F#.

Names are lexically divided into identifiers and symbols:

• Identifiers begin with a letter or underscore and contain letters, numbers, underscores, and apostrophes.

• Symbols contain the characters found in the default operators (+-*/%=!><|&^)

All function and variable names must be identifiers, and all infix operators are symbols. An identifier can be used as
an infix operator by enclosing it in backticks, as in Haskell.

Identifiers are case-sensitive, and there is no restriction on the case of the first letter (unlike Haskell and OCaml, but
like Standard ML).

User-defined operators are possible, but the fixity of the operator depends on its name. Specifically, the fixity of a
user-defined operator op is equal to the fixity of the built-in operator that is the longest prefix of op. For example, <<=
would have the same fixity as <<, and =<< the same as =. This rule is the same as the rule found in OCaml and F#.

Top-level functions and values are defined with let, as in OCaml and F#.

59

https://github.com/diku-dk/futhark/tree/master/examples
https://github.com/diku-dk/futhark/tree/master/examples

Futhark Documentation, Release 0.17.3

7.2 Evaluation

Futhark is a completely pure language, with no cheating through monads or anything of the sort.

Evaluation is eager or call-by-value, like most non-Haskell languages. However, there is no defined evaluation order.
Furthermore, the Futhark compiler is permitted to turn non-terminating programs into terminating programs, for ex-
ample by removing dead code that might cause an error. Moreover, there is no way to handle errors within a Futhark
program (no exceptions or similar); although errors are gracefully reported to whatever invokes the Futhark program.

The evaluation semantics are entirely sequential, with parallelism being solely an operational detail. Hence, race
conditions are impossible. The Futhark compiler does not automatically go looking for parallelism. Only certain
special constructs and built-in library functions (in particular map, reduce, scan, and filter) may be executed
in parallel.

Currying and partial application work as usual (although functions are not fully first class; see Types). Some Futhark
language constructs look like functions, but are not. This means they cannot be partially applied. These include
unsafe and assert.

Lambda terms are written as \x -> x + 2, as in Haskell.

A Futhark program is read top-down, and all functions must be declared in the order they are used, like Standard ML.
Unlike just about all functional languages, recursive functions are not supported. Most of the time, you will use bulk
array operations instead, but there is also a dedicated loop language construct, which is essentially syntactic sugar
for tail recursive functions.

7.3 Types

Futhark supports a range of integer types, floating point types, and booleans (see Primitive Types and Values). A
numeric literal can be suffixed with its desired type, such as 1i8 for an eight-bit signed integer. Un-adorned numerals
have their type inferred based on use. This only works for built-in numeric types.

Arrays are a built-in type. The type of an array containing elements of type t is written []t (not [t] as in Haskell),
and we may optionally annotate it with a size as [n]t (see Shape Declarations). Array values are written as [1,
2,3]. Array indexing is written a[i] with no space allowed between the array name and the brace. Indexing of
multi-dimensional arrays is written a[i,j]. Arrays are 0-indexed.

All types can be combined in tuples as usual, as well as in structurally typed records, as in Standard ML. Non-recursive
sum types are supported, and are also structurally typed. Abstract types are possible via the module system; see Module
System.

If a variable foo is a record of type {a: i32, b: bool}, then we access field a with dot notation: foo.a.
Tuples are a special case of records, where all the fields have a 0-indexed numeric label. For example, (i32, bool)
is the same as {0: i32, 1: bool}, and can be indexed as foo.1.

Sum types are defined as constructors separated by a vertical bar (|). Constructor names always start with a #. For
example, #red | #blue i32 is a sum type with the constructors #red and #blue, where the latter has an i32
as payload. The terms #red and #blue 2 produce values of this type. Constructor applications must always be fully
saturated. Due to the structural typing, type annotations are usually necessary to resolve ambiguities. For example,
the term #blue 2 can produce a value of any type that has an appropriate constructor.

Function types are supported with the usual a -> b, and functions can be passed as arguments to other functions.
However, there are some restrictions:

• A function cannot be put in an array (but a record or tuple is fine).

• A function cannot be returned from a branch.

• A function cannot be used as a loop parameter.

60 Chapter 7. Futhark Compared to Other Functional Languages

Futhark Documentation, Release 0.17.3

Function types interact with type parameters in a subtle way:

let id 't (x: t) = x

This declaration defines a function id that has a type parameter t. Here, t is an unlifted type parameter, which is
guaranteed never to be a function type, and so in the body of the function we could choose to put parameter values of
type t in an array. However, it means that this identity function cannot be called on a functional value. Instead, we
probably want a lifted type parameter:

let id '^t (x: t) = x

Such lifted type parameters are not restricted from being instantiated with function types. On the other hand, in the
function definition they are subject to the same restrictions as functional types.

Futhark supports Hindley-Milner type inference (with some restrictions), so we could also just write it as:

let id x = x

Type abbreviations are possible:

type foo = (i32, i32)

Type parameters are supported as well:

type pair 'a 'b = (a, b)

As with everything else, they are structurally typed, so the types pair i32 bool and (i32, bool) are entirely
interchangeable. Most unusually, this is also the case for sum types. The following two types are entirely interchange-
able:

type maybe 'a = #just a | #nothing

type option 'a = #nothing | #just a

Only for abstract types, where the definition has been hidden via the module system, do type names have any signifi-
cance.

Size parameters can also be passed:

type vector [n] t = [n]t
type i32matrix [n][m] = [n] (vector [m] i32)

Note that for an actual array type, the dimensions come before the element type, but with a type abbreviation, a size is
just another parameter. This easily becomes hard to read if you are not careful.

7.3. Types 61

Futhark Documentation, Release 0.17.3

62 Chapter 7. Futhark Compared to Other Functional Languages

CHAPTER

EIGHT

HACKING ON THE FUTHARK COMPILER

The Futhark compiler is a significant body of code with a not entirely straightforward design. The main source of
documentation is the Haddock comments in the source code itself. You can generate hyperlinked reference documen-
tation by running stack haddock or cabal haddock, depending on your preference of build system. There is
also possibly-outdated documentation on Hackage

If you feel that the documentation is incomplete, or something lacks an explanation, then feel free to report it as an
issue on the GitHub page. Documentation bugs are bugs too.

The Futhark compiler is usually built using Stack. It’s a good idea to familiarise yourself with how it works. As a
starting point, here are a few hints:

• When testing, pass --fast to stack to disable the GHC optimiser. This speeds up builds considerably
(although it still takes a while). The resulting Futhark compiler will run slower, but it is not something you will
notice for small test programs.

• When debugging, pass --profile to stack. This will build the Futhark compiler with debugging informa-
tion (not just profiling). In particular, hard crashes will print a stack trace. You can also get actual profiling
information by passing +RTS -pprof-all -RTS to the Futhark compiler. This asks the Haskell runtime to
print profiling information to a file. For more information, see the Profiling chapter in the GHC User Guide.

• You may wish to set the environment variable FUTHARK_COMPILER_DEBUGGING=1. Currently this only
has the effect of making the frontend print internal names, but it may control more things in the future.

8.1 Debugging Internal Type Errors

The Futhark compiler uses a typed core language, and the type checker is run after every pass. If a given pass produces
a program with inconsistent typing, the compiler will report an error and abort. While not every compiler bug will
manifest itself as a core language type error (unfortunately), many will. To write the erroneous core program to a file
in case of type error, pass -v filename to the compiler. This will also enable verbose output, so you can tell which
pass fails. The -v option is also useful when the compiler itself crashes, as you can at least tell where in the pipeline
it got to.

63

http://hackage.haskell.org/package/futhark
https://github.com/diku-dk/futhark
https://docs.haskellstack.org/en/stable/README/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html

Futhark Documentation, Release 0.17.3

8.2 Checking Generated Code

Hacking on the compiler will often involve inspecting the quality of the generated code. The recommended way to
do this is to use futhark-c or futhark-opencl to compile a Futhark program to an executable. These backends insert
various forms of instrumentation that can be enabled by passing run-time options to the generated executable.

• As a first resort, use -t option to use the built-in runtime measurements. A nice trick is to pass -t /dev/
stderr, while redirecting standard output to /dev/null. This will print the runtime on the screen, but not
the execution result.

• Optionally use -r to ask for several runs, e.g. -r 10. If combined with -t, this will cause several runtimes to
be printed (one per line). The futhark-bench tool itself uses -t and -r to perform its measurements.

• Pass -D to have the program print information on allocation and deallocation of memory.

• (futhark-opencl only) Use the -D option to enable synchronous execution. clFinish() will be called after
most OpenCL operations, and a running log of kernel invocations will be printed. At the end of execution, the
program prints a table summarising all kernels and their total runtime and average runtime.

8.3 Using futhark dev

For debugging specific compiler passes, the futhark dev subcommand allows you to tailor your own compilation
pipeline using command line options. It is also useful for seeing what the AST looks like after specific passes.

8.4 When you are about to have a bad day

When using the cuda backend, you can use the --dump-ptx runtime option to dump PTX, a kind of high-level
assembly for NVIDIA GPUs, corresponding to the GPU kernels. This can be used to investigate why the generated
code isn’t running as fast as you expect (not fun), or even whether NVIDIAs compiler is miscompiling something
(extremely not fun). With the OpenCL backend, --dump-opencl-binary does the same thing.

On AMD platforms, --dump-opencl-binary tends to produce an actual binary of some kind, and it is pretty
tricky to obtain a debugger for it (they are available and open source, but the documentation and installation instructions
are terrible). Instead, AMDs OpenCL kernel compiler accepts a -save-temps=foo build option, which will make
it write certain intermediate files, prefixed with foo. In particular, it will write an .s file that contains what appears
to be HSA assembly (at least when using ROCm). If you find yourself having to do do this, then you are definitely
going to have a bad day, and probably evening and night as well.

64 Chapter 8. Hacking on the Futhark Compiler

CHAPTER

NINE

BINARY DATA FORMAT

Futhark programs compiled to an executable support both textual and binary input. Both are read via standard input,
and can be mixed, such that one argument to an entry point may be binary, and another may be textual. The binary
input format takes up significantly less space on disk, and can be read much faster than the textual format. This chapter
describes the binary input format and its current limitations. The input formats (whether textual or binary) are not used
for Futhark programs compiled to libraries, which instead use whichever format is supported by their host language.

Currently reading binary input is only supported for programs generated by futhark c/futhark opencl, and
futhark py/futhark pyopencl. It is not supported for futhark run.

You can generate random data in the binary format with futhark dataset (futhark-dataset). This tool can also
be used to convert between binary and textual data.

Futhark-generated executables can be asked to generate binary output with the -b option.

9.1 Specification

Elements that are bigger than one byte are always stored using little endian – we mostly run our code on x86 hardware
so this seemed like a reasonable choice.

When reading input for an argument to the entry function, we need to be able to differentiate between text and binary
input. If the first non-whitespace character of the input is a b we will parse this argument as binary, otherwise we
will parse it in text format. Allowing preceding whitespace characters makes it easy to use binary input for some
arguments, and text input for others.

The general format has this header:

b <version> <num_dims> <type>

Where version is a byte containing the version of the binary format used for encoding (currently 2), num_dims is
the number of dimensions in the array as a single byte (0 for scalar), and type is a 4 character string describing the
type of the values(s) – see below for more details.

Encoding a scalar value is done by treating it as a 0-dimensional array:

b <version> 0 <type> <value>

To encode an array we must encode the number of dimensions n as a single byte, each dimension dim_i as an
unsigned 64-bit little endian integer, and finally all the values in their binary little endian representation:

b <version> <n> <type> <dim_1> <dim_2> ... <dim_n> <values>

65

Futhark Documentation, Release 0.17.3

9.1.1 Type Values

A type is identified by a 4 character ASCII string (four bytes). Valid types are:

" i8"
" i16"
" i32"
" i64"
" u8"
" u16"
" u32"
" u64"
" f32"
" f64"
"bool"

Note that unsigned and signed integers have the same byte-level representation.

66 Chapter 9. Binary Data Format

CHAPTER

TEN

FUTHARK

10.1 SYNOPSIS

futhark <subcommand> options. . .

10.2 DESCRIPTION

Futhark is a data-parallel functional array language. Through various subcommands, the futhark tool provides
facilities for compiling, developing, or analysing Futhark programs. Most subcommands are documented in their own
manpage. For example, futhark opencl is documented as futhark-opencl. The remaining subcommands are
documented in this page.

10.3 COMMANDS

10.3.1 futhark check [-w] PROGRAM

Check whether a Futhark program type checks. With -w, no warnings are printed.

10.3.2 futhark datacmp FILE_A FILE_B

Check whether the two files contain the same Futhark values. The files must be formatted using the general Futhark
data format that is used by all other executable and tools (such as futhark-dataset). All discrepancies will be reported.
This is in contrast to futhark-test, which only reports the first one.

10.3.3 futhark dataget PROGRAM DATASET

Find the test dataset whose description contains DATASET (e.g. #1) and print it in binary representation to standard
output.

67

Futhark Documentation, Release 0.17.3

10.3.4 futhark dev options. . . PROGRAM

A Futhark compiler development command, intentionally undocumented and intended for use in developing the
Futhark compiler, not for programmers writing in Futhark.

10.3.5 futhark imports PROGRAM

Print all non-builtin imported Futhark files to stdout, one per line.

10.3.6 futhark query PROGRAM LINE COL

Print information about the variable at the given position in the program.

10.4 SEE ALSO

futhark-opencl, futhark-c, futhark-python, futhark-pyopencl, futhark-dataset, futhark-doc, futhark-test, futhark-bench,
futhark-run, futhark-repl

68 Chapter 10. futhark

CHAPTER

ELEVEN

FUTHARK-AUTOTUNE

11.1 SYNOPSIS

futhark autotune [options. . .] <program.fut>

11.2 DESCRIPTION

futhark-autotune attemps to find optimal values for threshold parameters given representative datasets. This
is done by repeatedly running running the program through futhark-bench with different values for the threshold
parameters. When futhark-autotune finishes tuning a program foo.fut, the results are written to foo.fut.
tuning, which will then automatically be picked up by subsequent uses of futhark-bench and futhark-test.

Currently, only the entry point named main is tuned.

11.3 OPTIONS

--backend=name The backend used when compiling Futhark programs (without leading
futhark, e.g. just opencl).

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark autotune itself.

--pass-option=opt Pass an option to programs that are being run. For example, we might want to
run OpenCL programs on a specific device:

futhark autotune prog.fut --backend=opencl --pass-option=-
→˓dHawaii

--runs=count The number of runs per data set.

-v, --verbose Print verbose information about what the tuner is doing. Pass multiple times to
increase the amount of information printed.

--tuning=EXTENSION Change the extension used for tuning files (.tuning by default).

--timeout=seconds Initial tuning timeout for each dataset in seconds. After running the intitial tuning
run on each dataset, the timeout is based on the run time of that initial tuning.
Defaults to 60.

A negative timeout means to wait indefinitely.

69

Futhark Documentation, Release 0.17.3

11.4 SEE ALSO

futhark-bench

70 Chapter 11. futhark-autotune

CHAPTER

TWELVE

FUTHARK-BENCH

12.1 SYNOPSIS

futhark bench [options. . .] programs. . .

12.2 DESCRIPTION

This tool is the recommended way to benchmark Futhark programs. Programs are compiled using the specified
backend (futhark c by default), then run a number of times for each test case, and the average runtime printed
on standard output. Refer to futhark-test for information on how to format test data. A program will be ignored if it
contains no data sets - it will not even be compiled.

If compilation of a program fails, then futhark bench will abort immediately. If execution of a test set fails, an
error message will be printed and benchmarking will continue (and --json will write the file), but a non-zero exit
code will be returned at the end.

12.3 OPTIONS

--backend=name The backend used when compiling Futhark programs (without leading
futhark, e.g. just opencl).

--concurrency=NUM The number of benchmark programs to prepare concurrently. Defaults to the
number of cores available. Prepare means to compile the benchmark, as well as
generate any needed datasets. In some cases, this generation can take too much
memory, in which case lowering --concurrency may help.

--entry-point=name Only run entry points with this name.

--exclude-case=TAG Do not run test cases that contain the given tag. Cases marked with “nobench”
or “disable” are ignored by default.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark bench itself.

--ignore-files=REGEX Ignore files whose path match the given regular expression.

--json=file Write raw results in JSON format to the specified file.

--no-tuning Do not look for tuning files.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

71

Futhark Documentation, Release 0.17.3

futhark bench prog.fut --backend=opencl --pass-option=-
→˓dHawaii

--pass-compiler-option=opt Pass an extra option to the compiler when compiling the programs.

--runner=program If set to a non-empty string, compiled programs are not run directly, but instead
the indicated program is run with its first argument being the path to the compiled
Futhark program. This is useful for compilation targets that cannot be executed
directly (as with futhark-pyopencl on some platforms), or when you wish to run
the program on a remote machine.

--runs=count The number of runs per data set.

--skip-compilation Do not run the compiler, and instead assume that each benchmark program has
already been compiled. Use with caution.

--timeout=seconds If the runtime for a dataset exceeds this integral number of seconds, it is aborted.
Note that the time is allotted not per run, but for all runs for a dataset. A twenty
second limit for ten runs thus means each run has only two seconds (minus ini-
tialisation overhead).

A negative timeout means to wait indefinitely.

-v, --verbose Print verbose information about what the benchmark is doing. Pass multiple times
to increase the amount of information printed.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which
is suffixed to the name of the program. For example, given --tuning=tuning
(the default), the program foo.fut will be passed the tuning file foo.fut.
tuning if it exists.

12.4 WHAT FUTHARK BENCH MEASURES

futhark bench measures the time it takes to run the given Futhark program by passing the -t FILE option to
the generated program. See the man page for the specific compiler to see exactly what is measured.

12.5 EXAMPLES

The following program benchmarks how quickly we can sum arrays of different sizes:

-- How quickly can we reduce arrays?
--
-- ==
-- nobench input { 0 }
-- output { 0 }
-- input { 100 }
-- output { 4950 }
-- compiled input { 100000 }
-- output { 704982704 }
-- compiled input { 100000000 }
-- output { 887459712 }

let main(n: i32): i32 =
reduce (+) 0 (iota n)

72 Chapter 12. futhark-bench

Futhark Documentation, Release 0.17.3

12.6 SEE ALSO

futhark-c, futhark-test

12.6. SEE ALSO 73

Futhark Documentation, Release 0.17.3

74 Chapter 12. futhark-bench

CHAPTER

THIRTEEN

FUTHARK-C

13.1 SYNOPSIS

futhark c [options. . .] <program.fut>

13.2 DESCRIPTION

futhark c translates a Futhark program to sequential C code, and either compiles that C code with gcc(1) to an
executable binary program, or produces a .h and .c file that can be linked with other code.. The standard Futhark
optimisation pipeline is used, and GCC is invoked with -O3, -lm, and -std=c99.

The resulting program will read the arguments to the entry point (main by default) from standard input and print its
return value on standard output. The arguments are read and printed in Futhark syntax.

13.3 OPTIONS

-h Print help text to standard output and exit.

--library Generate a library instead of an executable. Appends .c/.h to the name indi-
cated by the -o option to determine output file names.

-o outfile Where to write the result. If the source program is named foo.fut, this defaults
to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

75

Futhark Documentation, Release 0.17.3

13.4 EXECUTABLE OPTIONS

The following options are accepted by executables generated by futhark c.

-h, --help Print help text to standard output and exit.

-b, --binary-output Print the program result in the binary output format. The default is human-
readable text, which is very slow.

-D, --debugging Perform possibly expensive internal correctness checks and verbose logging. Im-
plies -L.

-e, --entry-point=FUN The entry point to run. Defaults to main.

-L, --log Print various low-overhead logging information to stderr while running.

-r, --runs=NUM Perform NUM runs of the program. With -t, the runtime for each individual run
will be printed. Additionally, a single leading warmup run will be performed (not
counted). Only the final run will have its result written to stdout.

-t, --write-runtime-to=FILE Print the time taken to execute the program to the indicated file, an inte-
gral number of microseconds.

13.5 SEE ALSO

futhark-opencl, futhark-cuda, futhark-test

76 Chapter 13. futhark-c

CHAPTER

FOURTEEN

FUTHARK-CUDA

14.1 SYNOPSIS

futhark cuda [options. . .] <program.fut>

14.2 DESCRIPTION

futhark cuda translates a Futhark program to C code invoking CUDA kernels, and either compiles that C code
with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code. The
standard Futhark optimisation pipeline is used, and GCC is invoked with -O, -lm, and -std=c99. The resulting
program will otherwise behave exactly as one compiled with futhark c.

futhark cuda uses -lcuda -lcudart -lnvrtc to link. If using --library, you will need to do the same
when linking the final binary.

The generated CUDA code can be called from multiple CPU threads, as it brackets every API operation with
cuCtxPushCurrent() and cuCtxPopCurrent().

14.3 OPTIONS

-h Print help text to standard output and exit.

--library Generate a library instead of an executable. Appends .c/.h to the name indi-
cated by the -o option to determine output file names.

-o outfile Where to write the result. If the source program is named foo.fut, this defaults
to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

77

Futhark Documentation, Release 0.17.3

14.4 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-c. The -t option behaves as with
futhark-opencl. For commonality, the options use OpenCL nomenclature (“group” instead of “thread block”).

The following additional options are accepted.

-h, --help Print help text to standard output and exit.

--default-group-size=INT The default size of thread blocks that are launched. Capped to the hardware
limit if necessary.

--default-num-groups=INT The default number of thread blocks that are launched.

--default-threshold=INT The default parallelism threshold used for comparisons when selecting be-
tween code versions generated by incremental flattening. Intuitively, the amount
of parallelism needed to saturate the GPU.

--default-tile-size=INT The default tile size used when performing two-dimensional tiling (the work-
group size will be the square of the tile size).

--dump-cuda=FILE Don’t run the program, but instead dump the embedded CUDA kernels to the
indicated file. Useful if you want to see what is actually being executed.

--dump-ptx=FILE Don’t run the program, but instead dump the PTX-compiled version of the em-
bedded kernels to the indicated file.

--load-cuda=FILE Instead of using the embedded CUDA kernels, load them from the indicated file.

--load-ptx=FILE Load PTX code from the indicated file.

--nvrtc-option=OPT Add an additional build option to the string passed to NVRTC. Refer to the
CUDA documentation for which options are supported. Be careful - some options
can easily result in invalid results.

--print-sizes Print all sizes that can be set with -size or --tuning.

--size=ASSIGNMENT Set a configurable run-time parameter to the given value. ASSIGNMENT must
be of the form NAME=INT Use --print-sizes to see which names are avail-
able.

--tuning=FILE Read size=value assignments from the given file.

14.5 ENVIRONMENT

If run without --library, futhark cudawill invoke gcc(1) to compile the generated C program into a binary.
This only works if gcc can find the necessary CUDA libraries. On most systems, CUDA is installed in /usr/
local/cuda, which is not part of the default gcc search path. You may need to set the following environment
variables before running futhark cuda:

LIBRARY_PATH=/usr/local/cuda/lib64
LD_LIBRARY_PATH=/usr/local/cuda/lib64/
CPATH=/usr/local/cuda/include

78 Chapter 14. futhark-cuda

Futhark Documentation, Release 0.17.3

14.6 SEE ALSO

futhark-opencl

14.6. SEE ALSO 79

Futhark Documentation, Release 0.17.3

80 Chapter 14. futhark-cuda

CHAPTER

FIFTEEN

FUTHARK-DATASET

15.1 SYNOPSIS

futhark dataset [options. . .]

15.2 DESCRIPTION

Generate random values in Futhark syntax, which can be useful when generating input datasets for program testing.
All Futhark primitive types are supported. Tuples are not supported. Arrays of specific (non-random) sizes can
be generated. You can specify maximum and minimum bounds for values, as well as the random seed used when
generating the data. The generated values are written to standard output.

If no -g/--generate options are passed, values are read from standard input, and printed to standard output in the
indicated format. The input format (whether textual or binary) is automatically detected.

15.3 OPTIONS

-b, --binary Output data in binary Futhark format (must precede –generate).

-g type, --generate type Generate a value of the indicated type, e.g. -g i32 or -g [10]f32.

The type may also be a value, in which case that literal value is generated.

-s int Set the seed used for the RNG. Zero by default.

--T-bounds=<min:max> Set inclusive lower and upper bounds on generated values of type T. T is any
primitive type, e.g. i32 or f32. The bounds apply to any following uses of the
-g option.

You can alter the output format using the following flags. To use them, add them before data generation (–generate):

--text Output data in text format (must precede –generate). Default.

-t, --type Output the types of values (textually) instead of the values themselves. Mostly
useful when reading values on stdin.

81

Futhark Documentation, Release 0.17.3

15.4 EXAMPLES

Generate a 4 by 2 integer matrix:

futhark dataset -g [4][2]i32

Generate an array of floating-point numbers and an array of indices into that array:

futhark dataset -g [10]f32 --i32-bounds=0:9 -g [100]i32

To generate binary data, the --binary must come before the --generate:

futhark dataset --binary --generate=[42]i32

Create a binary data file from a data file:

futhark dataset --binary < any_data > binary_data

Determine the types of values contained in a data file:

futhark dataset -t < any_data

15.5 SEE ALSO

futhark-test, futhark-bench

82 Chapter 15. futhark-dataset

CHAPTER

SIXTEEN

FUTHARK-DOC

16.1 SYNOPSIS

futhark doc [options. . .] dir

16.2 DESCRIPTION

futhark doc generates HTML-formatted documentation from Futhark code. One HTML file will be created for
each .fut file in the given directory, as well as any file reachable through import expressions. The given Futhark
code will be considered as one cohesive whole, and must be type-correct.

Futhark definitions may be documented by prefixing them with a block of line comments starting with -- | (see
example below). Simple Markdown syntax is supported within these comments. A link to another identifier is possible
with the notation `name`@namespace, where namespacemust be either term, type, or mtype (module names
are in the term namespace). A file may contain a leading documentation comment, which will be considered the file
abstract.

futhark doc will ignore any file whose documentation comment consists solely of the word “ignore”. This is
useful for files that contain tests, or are otherwise not relevant to the reader of the documentation.

16.3 OPTIONS

-h Print help text to standard output and exit.

-o outdir The name of the directory that will contain the generated documentation. This
option is mandatory.

-v, --verbose Print status messages to stderr while running.

-V Print version information on standard output and exit.

83

Futhark Documentation, Release 0.17.3

16.4 EXAMPLES

-- | Gratuitous re-implementation of `map`@term.
--
-- Does exactly the same.
let mymap = ...

16.5 SEE ALSO

futhark-test, futhark-bench

84 Chapter 16. futhark-doc

CHAPTER

SEVENTEEN

FUTHARK-OPENCL

17.1 SYNOPSIS

futhark opencl [options. . .] <program.fut>

17.2 DESCRIPTION

futhark opencl translates a Futhark program to C code invoking OpenCL kernels, and either compiles that C
code with gcc(1) to an executable binary program, or produces a .h and .c file that can be linked with other code.
The standard Futhark optimisation pipeline is used, and GCC is invoked with -O, -lm, and -std=c99. The resulting
program will otherwise behave exactly as one compiled with futhark c.

futhark opencl uses -lOpenCL to link (-framework OpenCL on macOS). If using --library, you will
need to do the same when linking the final binary.

17.3 OPTIONS

-h Print help text to standard output and exit.

--library Generate a library instead of an executable. Appends .c/.h to the name indi-
cated by the -o option to determine output file names.

-o outfile Where to write the result. If the source program is named foo.fut, this defaults
to foo.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

85

Futhark Documentation, Release 0.17.3

17.4 EXECUTABLE OPTIONS

Generated executables accept the same options as those generated by futhark-c. For the -t option, The time taken to
perform device setup or teardown, including writing the input or reading the result, is not included in the measurement.
In particular, this means that timing starts after all kernels have been compiled and data has been copied to the device
buffers but before setting any kernel arguments. Timing stops after the kernels are done running, but before data has
been read from the buffers or the buffers have been released.

The following additional options are accepted.

-h, --help Print help text to standard output and exit.

--build-option=OPT Add an additional build option to the string passed to clBuildProgram().
Refer to the OpenCL documentation for which options are supported. Be careful
- some options can easily result in invalid results.

--default-group-size=INT The default size of OpenCL workgroups that are launched. Capped to the
hardware limit if necessary.

--default-num-groups=INT The default number of OpenCL workgroups that are launched.

--default-threshold=INT The default parallelism threshold used for comparisons when selecting be-
tween code versions generated by incremental flattening. Intuitively, the amount
of parallelism needed to saturate the GPU.

--default-tile-size=INT The default tile size used when performing two-dimensional tiling (the work-
group size will be the square of the tile size).

-d, --device=NAME Use the first OpenCL device whose name contains the given string. The special
string #k, where k is an integer, can be used to pick the k-th device, numbered
from zero. If used in conjunction with -p, only the devices from matching plat-
forms are considered.

--dump-opencl=FILE Don’t run the program, but instead dump the embedded OpenCL program to
the indicated file. Useful if you want to see what is actually being executed.

--dump-opencl-binary=FILE Don’t run the program, but instead dump the compiled version of the
embedded OpenCL program to the indicated file. On NVIDIA platforms, this
will be PTX code.

--load-opencl=FILE Instead of using the embedded OpenCL program, load it from the indicated file.

--load-opencl-binary=FILE Load an OpenCL binary from the indicated file.

-p, --platform=NAME Use the first OpenCL platform whose name contains the given string. The
special string #k, where k is an integer, can be used to pick the k-th platform,
numbered from zero.

--print-sizes Print all sizes that can be set with -size or --tuning.

-P, --profile Gather profiling data while executing and print out a summary at the end. When
-r is used, only the last run will be profiled. Implied by -D.

--size=ASSIGNMENT Set a configurable run-time parameter to the given value. ASSIGNMENT must
be of the form NAME=INT Use --print-sizes to see which names are avail-
able.

--tuning=FILE Read size=value assignments from the given file.

--list-devices List all OpenCL devices and platforms available on the system.

86 Chapter 17. futhark-opencl

Futhark Documentation, Release 0.17.3

17.5 SEE ALSO

futhark-test, futhark-cuda, futhark-c

17.5. SEE ALSO 87

Futhark Documentation, Release 0.17.3

88 Chapter 17. futhark-opencl

CHAPTER

EIGHTEEN

FUTHARK-PKG

18.1 SYNOPSIS

futhark pkg add PKGPATH [X.Y.Z]

futhark pkg check

futhark pkg init PKGPATH

futhark pkg fmt

futhark pkg remove PKGPATH

futhark pkg sync

futhark pkg upgrade

futhark pkg versions

18.2 DESCRIPTION

This tool is used to modify the package manifest (futhark.pkg) and download the required packages it describes.
futhark pkg is not a build system; you will still need to compile your Futhark code with the usual compilers. The
only purpose of futhark pkg is to download code (and perform other package management utility tasks). This
manpage is not a general introduction to package management in Futhark; see the User’s Guide for that.

The futhark pkg subcommands will modify only two locations in the file system (relative to the current working
directory): the futhark.pkg file, and the contents of lib/. When modifying lib/, futhark pkg constructs
the new version in lib~new/ and backs up the old version in lib~old. If futhark pkg should fail for any
reason, you can recover the old state by moving lib~old back. These temporary directories are erased if futhark
pkg finishes without errors.

The futhark pkg sync and futhark pkg init subcommands are the only ones that actually modifies lib/
; the others modify only futhark.pkg and require you to manually run futhark pkg sync afterwards.

Most commands take a -v/--verbose option that makes futhark pkg write running diagnostics to stderr.

Network requests (exclusively HTTP GETs) are done via curl, which must be available on the PATH.

89

Futhark Documentation, Release 0.17.3

18.3 COMMANDS

18.3.1 futhark pkg add PKGPATH [X.Y.Z]

Add the specified package of the given minimum version as a requirement to futhark.pkg. If no version is
provided, the newest one is used. If the package is already required in futhark.pkg, the new version requirement
will replace the old one.

Note that adding a package does not automatically download it. Run futhark pkg sync to do that.

18.3.2 futhark pkg check

Verify that the futhark.pkg is valid, that all required packages are available in the indicated versions. This com-
mand does not check that these versions contain well-formed code. If a package path is defined in futhark.pkg,
also checks that .fut files are located at the expected location in the file system.

18.3.3 futhark pkg init PKGPATH

Create a new futhark.pkg defining a package with the given package path, and initially no requirements.

18.3.4 futhark pkg fmt

Reformat the futhark.pkg file, while retaining any comments.

18.3.5 futhark pkg remove PKGPATH

Remove a package from futhark.pkg. Does not remove it from the lib/ directory.

18.3.6 futhark pkg sync

Populate the lib/ directory with the packages listed in futhark.pkg. Warning: this will delete everything in
lib/ that does not relate to a file listed in futhark.pkg, as well as any local modifications.

18.3.7 futhark pkg upgrade

Upgrade all package requirements in futhark.pkg to the newest available versions.

18.3.8 futhark pkg versions PKGPATH

Print all available versions for the given package path.

90 Chapter 18. futhark-pkg

Futhark Documentation, Release 0.17.3

18.4 COMMIT VERSIONS

It is possible to use futhark pkg with packages that have not yet made proper releases. This is done via pseu-
doversions of the form 0.0.0-yyyymmddhhmmss+commitid. The timestamp is not verified against the actual
commit. The timestamp ensures that newer commits take precedence if multiple packages depend on a commit version
for the same package. If futhark pkg add is given a package with no releases, the most recent commit will be
used. In this case, the timestamp is merely set to the current time.

Commit versions are awkward and fragile, and should not be relied upon. Issue proper releases (even experimental 0.x
version) as soon as feasible. Released versions also always take precedence over commit versions, since any version
number will be greater than 0.0.0.

18.5 EXAMPLES

Create a new package that will be hosted at https://github.com/sturluson/edda:

futhark pkg init github.com/sturluson/edda

Add a package dependency:

futhark pkg add github.com/sturluson/hattatal

Download the dependencies:

futhark pkg sync

And then you’re ready to start hacking! (Except that these packages do not actually exist.)

18.6 BUGS

Since the lib/ directory is populated with transitive dependencies as well, it is possible for a package to depend
unwittingly on one of the dependencies of its dependencies, without the futhark.pkg file reflecting this.

There is no caching of zipballs and version lists between invocations, so the network traffic can be rather heavy.

Only GitHub and GitLab are supported as code hosting sites.

18.7 SEE ALSO

futhark-test, futhark-doc

18.4. COMMIT VERSIONS 91

Futhark Documentation, Release 0.17.3

92 Chapter 18. futhark-pkg

CHAPTER

NINETEEN

FUTHARK-PYOPENCL

19.1 SYNOPSIS

futhark pyopencl [options. . .] infile

19.2 DESCRIPTION

futhark pyopencl translates a Futhark program to Python code invoking OpenCL kernels, which depends on
Numpy and PyOpenCL. By default, the program uses the first device of the first OpenCL platform - this can be
changed by passing -p and -d options to the generated program (not to futhark pyopencl itself).

The resulting program will otherwise behave exactly as one compiled with futhark py. While the sequential host-
level code is pure Python and just as slow as in futhark py, parallel sections will have been compiled to OpenCL,
and runs just as fast as when using futhark opencl. The kernel launch overhead is significantly higher, however,
so a good rule of thumb when using futhark pyopencl is to aim for having fewer but longer-lasting parallel
sections.

The generated code requires at least PyOpenCL version 2015.2.

19.3 OPTIONS

-h Print help text to standard output and exit.

--library Instead of compiling to an executable program, generate a Python module that can
be imported by other Python code. The module will contain a class of the same
name as the Futhark source file with .fut removed. Objects of the class define
one method per entry point in the Futhark program, with matching parameters
and return value.

-o outfile Where to write the resulting binary. By default, if the source program is named
‘foo.fut’, the binary will be named ‘foo’.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

93

Futhark Documentation, Release 0.17.3

19.4 SEE ALSO

futhark-python, futhark-opencl

94 Chapter 19. futhark-pyopencl

CHAPTER

TWENTY

FUTHARK-PYTHON

20.1 SYNOPSIS

futhark python [options. . .] infile

20.2 DESCRIPTION

futhark python translates a Futhark program to sequential Python code, which depends on Numpy.

The resulting program will read the arguments to the main function from standard input and print its return value on
standard output. The arguments are read and printed in Futhark syntax.

The generated code is very slow, likely too slow to be useful. It is more interesting to use this command’s big brother,
futhark-pyopencl.

20.3 OPTIONS

-h Print help text to standard output and exit.

--library Instead of compiling to an executable program, generate a Python module that can
be imported by other Python code. The module will contain a class of the same
name as the Futhark source file with .fut removed. Objects of the class define
one method per entry point in the Futhark program, with matching parameters
and return value.

-o outfile Where to write the resulting binary. By default, if the source program is named
‘foo.fut’, the binary will be named ‘foo’.

--safe Ignore unsafe in program and perform safety checks unconditionally.

-v verbose Enable debugging output. If compilation fails due to a compiler error, the result
of the last successful compiler step will be printed to standard error.

-V Print version information on standard output and exit.

-W Do not print any warnings.

--Werror Treat warnings as errors.

95

Futhark Documentation, Release 0.17.3

20.4 SEE ALSO

futhark-pyopencl

96 Chapter 20. futhark-python

CHAPTER

TWENTYONE

FUTHARK-REPL

21.1 SYNOPSIS

futhark repl [program.fut]

21.2 DESCRIPTION

Start an interactive Futhark session. This will let you interactively enter expressions and declarations which are
then immediately interpreted. If the entered line can be either a declaration or an expression, it is assumed to be a
declaration.

Futhark source files can be loaded using the :load command. This will erase any interactively entered definitions.
Use the :help command to see a list of commands. All commands are prefixed with a colon.

futhark-repl uses the Futhark interpreter, which grants access to certain special functions. See futhark-run for a
description.

21.3 OPTIONS

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

21.4 SEE ALSO

futhark-run, futhark-test

97

Futhark Documentation, Release 0.17.3

98 Chapter 21. futhark-repl

CHAPTER

TWENTYTWO

FUTHARK-RUN

22.1 SYNOPSIS

futhark run <program.fut>

22.2 DESCRIPTION

Execute the given program by evaluating the main function with arguments read from standard input, and write the
results on standard output.

futhark-run is very slow, and in practice only useful for testing, teaching, and experimenting with the language.
Certain special debugging functions are available in futhark-run:

trace 'a : a -> a Semantically identity, but prints the value on standard output.

break 'a : a -> a Semantically identity, but interrupts execution at the calling point, such that the environ-
ment can be inspected. Continue execution by entering an empty input line. Breakpoints are only respected
when starting a program from the prompt, not when passing a program on the command line.

22.3 OPTIONS

-e NAME Run the given entry point instead of main.

-h Print help text to standard output and exit.

-V Print version information on standard output and exit.

-w, --no-warnings Disable interpreter warnings.

22.4 SEE ALSO

futhark-repl, futhark-test

99

Futhark Documentation, Release 0.17.3

100 Chapter 22. futhark-run

CHAPTER

TWENTYTHREE

FUTHARK-TEST

23.1 SYNOPSIS

futhark test [options. . .] infiles. . .

23.2 DESCRIPTION

This tool is used to test Futhark programs based on input/output datasets. If a directory is given, all contained files
with a .fut extension are considered.

A Futhark test program is an ordinary Futhark program, with at least one test block describing input/output test cases
and possibly other options. A test block consists of commented-out text with the following overall format:

description
==
cases...

The description is an arbitrary (and possibly multiline) human-readable explanation of the test program. It is
separated from the test cases by a line containing just ==. Any comment starting at the beginning of the line, and
containing a line consisting of just ==, will be considered a test block. The format of a test case is as follows:

[tags { tags... }]
[entry: names...]
[compiled|nobench|random] input ({ values... } | @ filename)
output { values... } | auto output | error: regex

If compiled is present before the input keyword, this test case will never be passed to the interpreter. This is
useful for test cases that are annoyingly slow to interpret. The nobench keyword is for data sets that are too small to
be worth benchmarking, and only has meaning to futhark-bench.

If input is preceded by random, the text between the curly braces must consist of a sequence of Futhark types,
including sizes in the case of arrays. When futhark test is run, a file located in a data/ subdirectory, containing
values of the indicated types and shapes is, automatically constructed with futhark-dataset. Apart from sizes,
integer constants (with or without type suffix), and floating-point constants (always with type suffix) are also permitted.

If input is followed by an @ and a file name (which must not contain any whitespace) instead of curly braces, values
will be read from the indicated file. This is recommended for large data sets. This notation cannot be used with
random input.

After the input block, the expected result of the test case is written as either output followed by another block of
values, or an expected run-time error, in which a regular expression can be used to specify the exact error message

101

Futhark Documentation, Release 0.17.3

expected. If no regular expression is given, any error message is accepted. If neither output nor error is given,
the program will be expected to execute succesfully, but its output will not be validated.

If output is preceded by auto (as in auto output), the expected values are automatically generated by compil-
ing the program with futhark-c and recording its result for the given input (which must not fail). This is usually
only useful for testing or benchmarking alternative compilers, and not for testing the correctness of Futhark programs.

Alternatively, instead of input-output pairs, the test cases can simply be a description of an expected compile time type
error:

error: regex

This is used to test the type checker.

By default, both the interpreter and compiler is run on all test cases (except those that have specified compiled),
although this can be changed with command-line options to futhark test.

Tuple syntax is not supported when specifying input and output values. Instead, you can write an N-tuple as its
constituent N values. Beware of syntax errors in the values - the errors reported by futhark test are very poor.

An optional tags specification is permitted in the first test block. This section can contain arbitrary tags that classify
the benchmark:

tags { names... }

Tag are sequences of alphanumeric characters, dashes, and underscores, with each tag seperated by whitespace. Any
program with the disable tag is ignored by futhark test.

Another optional directive is entry, which specifies the entry point to be used for testing. This is useful for writing
programs that test libraries with multiple entry points. Multiple entry points can be specified on the same line by
separating them with space, and they will all be tested with the same input/output pairs. The entry directive affects
subsequent input-output pairs in the same comment block, and may only be present immediately preceding these
input-output pairs. If no entry is given, main is assumed. See below for an example.

For many usage examples, see the tests directory in the Futhark source directory. A simple example can be found
in EXAMPLES below.

23.3 OPTIONS

--backend=program The backend used when compiling Futhark programs (without leading
futhark, e.g. just opencl).

-c Only run compiled code - do not run any interpreters.

-C Compile the programs, but do not run them.

--concurrency=NUM The number of tests to run concurrently. Defaults to the number of (hyper-)cores
available.

--exclude=tag Do not run test cases that contain the given tag. Cases marked with “disable” are
ignored by default.

-i Only interpret - do not run any compilers.

-t Type-check the programs, but do not run them.

--futhark=program The program used to perform operations (eg. compilation). Defaults to the binary
running futhark test itself.

--no-terminal Print each result on a line by itself, without line buffering.

102 Chapter 23. futhark-test

Futhark Documentation, Release 0.17.3

--no-tuning Do not look for tuning files.

--pass-option=opt Pass an option to benchmark programs that are being run. For example, we might
want to run OpenCL programs on a specific device:

futhark test prog.fut --backend=opencl --pass-option=-
→˓dHawaii

--pass-compiler-option=opt Pass an extra option to the compiler when compiling the programs.

--runner=program If set to a non-empty string, compiled programs are not run directly, but instead
the indicated program is run with its first argument being the path to the compiled
Futhark program. This is useful for compilation targets that cannot be executed
directly (as with futhark-pyopencl on some platforms), or when you wish to run
the program on a remote machine.

--tuning=EXTENSION For each program being run, look for a tuning file with this extension, which
is suffixed to the name of the program. For example, given --tuning=tuning
(the default), the program foo.fut will be passed the tuning file foo.fut.
tuning if it exists.

23.4 EXAMPLES

The following program tests simple indexing and bounds checking:

-- Test simple indexing of an array.
-- ==
-- tags { firsttag secondtag }
-- input { [4,3,2,1] 1 }
-- output { 3 }
-- input { [4,3,2,1] 5 }
-- error: Assertion.*failed

let main (a: []i32) (i: i32): i32 =
a[i]

The following program contains two entry points, both of which are tested:

let add(x: i32, y: i32): i32 = x + y

-- Test the add1 function.
-- ==
-- entry: add1
-- input { 1 } output { 2 }

entry add1 (x: i32): i32 = add x 1

-- Test the sub1 function.
-- ==
-- entry: sub1
-- input { 1 } output { 0 }

entry sub1 (x: i32): i32 = add x (-1)

The following program contains an entry point that is tested with randomly generated data:

23.4. EXAMPLES 103

Futhark Documentation, Release 0.17.3

-- ==
-- random input { [100]i32 [100]i32 } auto output
-- random input { [1000]i32 [1000]i32 } auto output

let main xs ys = i32.product (map2 (*) xs ys)

23.5 SEE ALSO

futhark-bench, futhark-repl

104 Chapter 23. futhark-test

INDEX

F
FUTHARK_BACKEND_foo (C macro), 43
futhark_context (C struct), 44
futhark_context_clear_caches (C function),

44
futhark_context_config (C struct), 43
futhark_context_config_add_build_option

(C function), 47
futhark_context_config_add_nvrtc_option

(C function), 47
futhark_context_config_dump_binary_to

(C function), 47
futhark_context_config_dump_program_to

(C function), 46
futhark_context_config_dump_ptx_to (C

function), 47
futhark_context_config_free (C function), 43
futhark_context_config_load_binary_from

(C function), 47
futhark_context_config_load_program_from

(C function), 46
futhark_context_config_load_ptx_from (C

function), 47
futhark_context_config_new (C function), 43
futhark_context_config_select_device_interactively

(C function), 46
futhark_context_config_set_debugging (C

function), 43
futhark_context_config_set_default_group_size

(C function), 46
futhark_context_config_set_default_num_groups

(C function), 46
futhark_context_config_set_default_tile_size

(C function), 46
futhark_context_config_set_device (C

function), 46
futhark_context_config_set_logging (C

function), 43
futhark_context_config_set_platform (C

function), 46
futhark_context_config_set_profiling (C

function), 43

futhark_context_free (C function), 44
futhark_context_get_command_queue (C

function), 46
futhark_context_get_error (C function), 44
futhark_context_new (C function), 44
futhark_context_new_with_command_queue

(C function), 46
futhark_context_pause_profiling (C func-

tion), 44
futhark_context_report (C function), 44
futhark_context_sync (C function), 44
futhark_context_unpause_profiling (C

function), 44
futhark_entry_main (C function), 45
futhark_free_i32_1d (C function), 45
futhark_i32_1d (C struct), 45
futhark_new_i32_1d (C function), 45
futhark_new_raw_i32_1d (C function), 45
futhark_shape_i32_1d (C function), 45
futhark_values_i32_1d (C function), 45

105

	Installation
	Dependencies
	Compiling from source
	Installing from a precompiled snapshot
	Installing Futhark on Linux
	Installing Futhark on macOS
	Setting up Futhark on Windows

	Basic Usage
	Compiling to Executable
	Compiling to Library
	Reproducibility

	Language Reference
	Identifiers and Keywords
	Primitive Types and Values
	Declarations
	Expressions
	Higher-order functions
	Type Inference
	Size Types
	In-place Updates
	Module System
	Referring to Other Files
	Attributes

	C API Reference
	Configuration
	Context
	Values
	Entry points
	GPU
	OpenCL
	CUDA
	General guarantees

	Package Management
	Basic Concepts
	Using Packages
	Creating Packages
	Version Selection
	Tests and Documentation for Dependencies
	Safety

	C Porting Guide
	Where This Guide Falls Short
	Types
	Operators
	Variable Mutation
	Arrays

	Futhark Compared to Other Functional Languages
	Basic Syntax
	Evaluation
	Types

	Hacking on the Futhark Compiler
	Debugging Internal Type Errors
	Checking Generated Code
	Using futhark dev
	When you are about to have a bad day

	Binary Data Format
	Specification

	futhark
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	SEE ALSO

	futhark-autotune
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-bench
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	WHAT FUTHARK BENCH MEASURES
	EXAMPLES
	SEE ALSO

	futhark-c
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXECUTABLE OPTIONS
	SEE ALSO

	futhark-cuda
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXECUTABLE OPTIONS
	ENVIRONMENT
	SEE ALSO

	futhark-dataset
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-doc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	futhark-opencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXECUTABLE OPTIONS
	SEE ALSO

	futhark-pkg
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	COMMIT VERSIONS
	EXAMPLES
	BUGS
	SEE ALSO

	futhark-pyopencl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-python
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-repl
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-run
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	futhark-test
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	Index

